Skip to main content
Log in

A fully parallelized scheme of constructing independent spanning trees on Möbius cubes

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A set of spanning trees in a graph is said to be independent (ISTs for short) if all the trees are rooted at the same node \(r\) and for any other node \(v(\ne r)\), the paths from \(v\) to \(r\) in any two trees are node-disjoint except the two end nodes \(v\) and \(r\). It was conjectured that for any \(n\)-connected graph there exist \(n\) ISTs rooted at an arbitrary node. Let \(N=2^n\) be the number of nodes in the \(n\)-dimensional Möbius cube \(MQ_n\). Recently, for constructing \(n\) ISTs rooted at an arbitrary node of \(MQ_n\), Cheng et al. (Comput J 56(11):1347–1362, 2013) and (J Supercomput 65(3):1279–1301, 2013), respectively, proposed a sequential algorithm to run in \({\mathcal O}(N\log N)\) time and a parallel algorithm that takes \({\mathcal O}(N)\) time using \(\log N\) processors. However, the former algorithm is executed in a recursive fashion and thus is hard to be parallelized. Although the latter algorithm can simultaneously construct \(n\) ISTs, it is not fully parallelized for the construction of each spanning tree. In this paper, we present a non-recursive and fully parallelized approach to construct \(n\) ISTs rooted at an arbitrary node of \(MQ_n\) in \({\mathcal O}(\log N)\) time using \(N\) nodes of \(MQ_n\) as processors. In particular, we derive useful properties from the description of paths in ISTs, which make the proof of independency to become easier than ever before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–192

    Article  Google Scholar 

  2. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th annual international high performance computing conference. Calgary, Alberta, Canada, pp 349–357

  3. Bao F, Funyu Y, Hamada Y, Igarashi Y (1998) Reliable broadcasting and secure distributing in channel networks. IEICE Trans Fundam Electron Commun Comput Sci E81-A(5):796–806

  4. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor: theoretical properties and algorithms. Parallel Comput 21(11):1783–1805

    Article  Google Scholar 

  5. Chang J-M, Wang J-D, Yang J-S, Pai K-J (2014) A comment on “Independent spanning trees in crossed cubes”. Inf Process Lett 114(12):734–739

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen X-B (2011) Parallel construction of optimal independent spanning trees on Cartesian product of complete graphs. Inf Process Lett 111(5):235–238

    Article  MATH  Google Scholar 

  7. Cheng B, Fan J, Jia X, Jia J (2013) Parallel construction of independent spanning trees and an application in diagnosis on Möbius cubes. J Supercomput 65(3):1279–1301

    Article  Google Scholar 

  8. Cheng B, Fan J, Jia X, Wang J (2013) Dimension-adjacent trees and parallel construction of independent spanning trees on crossed cubes. J Parallel Distrib Comput 73(5):641–652

    Article  MATH  Google Scholar 

  9. Cheng B, Fan J, Jia X, Zhang S (2013) Independent spanning trees in crossed cubes. Inf Sci 233:276–289

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng B, Fan J, Jia X, Zhang S, Chen B (2013) Constructive algorithm of independent spanning trees on Möbius cubes. Comput J 56(11):1347–1362

    Article  Google Scholar 

  11. Cheriyan J, Maheshwari SN (1988) Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. J Algorithms 9(4):507–537

    Article  MATH  MathSciNet  Google Scholar 

  12. Cull P, Larson SL (1995) The Möbius cubes. IEEE Trans Comput 44(5):647–659

    Article  MATH  MathSciNet  Google Scholar 

  13. Curran S, Lee O, Yu X (2006) Finding four independent trees. SIAM J Comput 35(5):1023–1058

    Article  MATH  MathSciNet  Google Scholar 

  14. Fan J (1998) Diagnosability of the Möbius cubes. IEEE Trans Parallel Distrib Syst 9(9):923–928

    Article  Google Scholar 

  15. Fan J (2002) Hamilton-connectivity and cycle-embedding of the Möbius cubes. Inf Process Lett 82(2):113–117

    Article  MATH  Google Scholar 

  16. Hsieh S-Y, Chang N-W (2006) Hamiltonian path embedding and pancyclicity on the Möbius cube with faulty nodes and faulty edges. IEEE Trans Comput 55(7):854–863

    Article  Google Scholar 

  17. Hsieh S-Y, Chen C-H (2004) Pancyclicity on Möbius cubes with maximal edge faults. Parallel Comput 30(3):407–421

    Article  MathSciNet  Google Scholar 

  18. Huck A (1994) Independent trees in graphs. Gr Comb 10(1):29–45

    Article  MATH  MathSciNet  Google Scholar 

  19. Huck A (1999) Independent trees in planar graphs. Gr Comb 15(1):29–77

    MATH  MathSciNet  Google Scholar 

  20. Itai A, Rodeh M (1988) The multi-tree approach to reliability in distributed networks. Inf Comput 79(1):43–59

    Article  MATH  MathSciNet  Google Scholar 

  21. Iwasaki Y, Kajiwara Y, Obokata K, Igarashi Y (1999) Independent spanning trees of chordal rings. Inf Process Lett 69(3):155–160

    Article  MathSciNet  Google Scholar 

  22. Kim J-S, Lee H-O, Cheng E, Lipták L (2011) Optimal independent spanning trees on odd graphs. J Supercomput 56(2):212–225

    Article  Google Scholar 

  23. Kim J-S, Lee H-O, Cheng E, Lipták L (2011) Independent spanning trees on even networks. Inf Sci 181(13):2892–2905

    Article  MATH  Google Scholar 

  24. Liu Y-J, Lan JK, Chou WY, Chen C (2011) Constructing independent spanning trees for locally twisted cubes. Theor Comput Sci 412(22):2237–2252

    Article  MATH  MathSciNet  Google Scholar 

  25. Miura K, Nakano S, Nishizeki T, Takahashi D (1999) A linear-time algorithm to find four independent spanning trees in four connected planar graphs. Int J Found Comput Sci 10(2):195–210

    Article  MathSciNet  Google Scholar 

  26. Nagai S, Nakano S (2001) A linear-time algorithm to find independent spanning trees in maximal planar graphs. IEICE Trans Fundam Electron Commun Comput Sci E84-A(5):1102–1109

  27. Obokata K, Iwasaki Y, Bao F, Igarashi Y (1996) Independent spanning trees of product graphs and their construction. IEICE Trans Fundam Electron Commun Comput Sci E79-A(11):1894–1903

  28. Rescigno AA (2001) Vertex-disjoint spanning trees of the star network with applications to fault-tolerance and security. Inf Sci 137:259–276

    Article  MATH  MathSciNet  Google Scholar 

  29. Tang S-M, Wang Y-L, Leu Y-H (2004) Optimal independent spanning trees on hypercubes. J Inf Sci Eng 20(1):143–155

    MathSciNet  Google Scholar 

  30. Tang S-M, Yang J-S, Wang Y-L, Chang J-M (2010) Independent spanning trees on multidimensional torus networks. IEEE Trans Comput 59(1):93–102

    Article  MathSciNet  Google Scholar 

  31. Tsai C-H (2008) Embedding of meshes in Möbius cubes. Theor Comput Sci 401:181–190

    Article  MATH  Google Scholar 

  32. Wang Y, Fan J, Zhou G, Jia X (2012) Independent spanning trees on twisted cubes. J Parallel Distrib Comput 72(1):58–69

    Article  MATH  Google Scholar 

  33. Wang Y, Fan J, Jia X, Huang H (2012) An algorithm to construct independent spanning trees on parity cubes. Theor Comput Sci 465:61–72

    Article  MATH  MathSciNet  Google Scholar 

  34. Werapun J, Intakosum S, Boonjing V (2012) An efficient parallel construction of optimal independent spanning trees on hypercubes. J Parallel Distrib Comput 72(12):1713–1724

    Article  MATH  Google Scholar 

  35. Xu M, Xu J-M (2005) Edge-pancyclicity of Möbius cubes. Inf Process Lett 96(4):136–140

    Article  MATH  Google Scholar 

  36. Xu J-M, Deng ZG (2005) Wide diameter of Möbius cubes. J Interconnect Netw 6(1):51–62

    Article  Google Scholar 

  37. Xu J-M, Ma M, Lü M (2006) Paths in Möbius cubes and crossed cubes. Inf Process Lett 97(3):94–97

    Article  MATH  Google Scholar 

  38. Yang J-S, Chan H-C, Chang J-M (2011) Broadcasting secure messages via optimal independent spanning trees in folded hypercubes. Discrete Appl Math 159(12):1254–1263

    Article  MATH  MathSciNet  Google Scholar 

  39. Yang J-S, Chang J-M (2010) Independent spanning trees on folded hyper-stars. Networks 56(4):272–281

    Article  MATH  MathSciNet  Google Scholar 

  40. Yang J-S, Chang J-M (2014) Optimal independent spanning trees on Cartesian product of hybrid graphs. Comput J 57(1):93–99

    Article  Google Scholar 

  41. Yang J-S, Chang J-M, Tang S-M, Wang Y-L (2007) Reducing the height of independent spanning trees in chordal rings. IEEE Trans Parallel Distrib Syst 18(5):644–657

    Article  Google Scholar 

  42. Yang J-S, Chang J-M, Tang S-M, Wang Y-L (2009) On the independent spanning trees of recursive circulant graphs \(G(cd^m, d)\) with \(d>2\). Theor Comput Sci 410(21–23):2001–2010

    Article  MATH  MathSciNet  Google Scholar 

  43. Yang J-S, Chang J-M, Tang S-M, Wang Y-L (2010) Constructing multiple independent spanning trees on recursive circulant graphs \(G(2^m,2)\). Int J Found Comput Sci 21(1):73–90

    Article  MATH  MathSciNet  Google Scholar 

  44. Yang J-S, Tang S-M, Chang J-M, Wang Y-L (2007) Parallel construction of optimal independent spanning trees on hypercubes. Parallel Comput 33(1):73–79

    Article  MathSciNet  Google Scholar 

  45. Yang J-S, Wu M-R, Chang J-M, Chang Y-H (2014) Open source for “Constructing independent spanning trees on Möbius cubes”. http://ms.ntub.edu.tw/~spade/IST-MQ

  46. Yang M-C, Li T-K, Tan JM, Hsu L-H (2005) Fault-tolerant pancyclicity of the Möbius cubes. IEICE Trans Fundam Electron Commun Comput Sci E88-A(1):346–352

  47. Yang X, Megson GM, Evens DJ (2006) Pancyclicity of Möbius cubes with faulty nodes. Microprocess Microsyst 30(3):165–172

    Article  Google Scholar 

  48. Zehavi A, Itai A (1989) Three tree-paths. J Graph Theory 13(2):175–188

    Article  MATH  MathSciNet  Google Scholar 

  49. Zhang Y-H, Hao W, Xiang T (2013) Independent spanning trees in crossed cubes. Inf Process Lett 113(18):653–658

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jou-Ming Chang.

Additional information

This research was partially supported by Ministry of Science and Technology under the Grants MOST103-2221-E-141-001 and MOST103-2221-E-141-003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JS., Wu, MR., Chang, JM. et al. A fully parallelized scheme of constructing independent spanning trees on Möbius cubes. J Supercomput 71, 952–965 (2015). https://doi.org/10.1007/s11227-014-1346-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-014-1346-z

Keywords

Navigation