Skip to main content
Log in

On a Generalization of Heyting Algebras I

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

\(\nabla \)-algebra is a natural generalization of Heyting algebra, unifying many algebraic structures including bounded lattices, Heyting algebras, temporal Heyting algebras and the algebraic presentation of the dynamic topological systems. In a series of two papers, we will systematically study the algebro-topological properties of different varieties of \(\nabla \)-algebras. In the present paper, we start with investigating the structure of these varieties by characterizing their subdirectly irreducible and simple elements. Then, we prove the closure of these varieties under the Dedekind-MacNeille completion and provide the canonical construction and the Kripke representation for \(\nabla \)-algebras by which we establish the amalgamation property for some varieties of \(\nabla \)-algebras. In the sequel of the present paper, we will complete the study by covering the logics of these varieties and their corresponding Priestley-Esakia and spectral duality theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbar Tabatabai, A., Implication via Spacetime, in M. Mojtahedi, S. Rahman, and M.S. Zarepour, (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir, vol. 49 of Logic, Epistemology, and the Unity of Science, Springer Cham, 2021, pp/ 161–216.

  2. Akin, E., The general topology of dynamical systems, Graduate Studies in Mathematics, 2010.

  3. Ardeshir, M., Aspects of basic logic, PhD thesis, Marquette University 1995.

  4. Ardeshir, M., and W. Ruitenburg, Basic propositional calculus. I, MLQ Mathematical Logic Quarterly 44(3):317–343, 1998.

    Article  Google Scholar 

  5. Ardeshir, M., and W. Ruitenburg, Latarres, lattices with an arrow, Studia Logica 106(4):757–788, 2018.

    Article  Google Scholar 

  6. Artemov, S., J. Davoren, and A. Nerode, Modal logics and topological semantics for hybrid systems, Mathematical Sciences Institute, Cornell University, 1997.

    Book  Google Scholar 

  7. Balbiani, P., J. Boudou, M. Diéguez, and D. Fernández-Duque, Bisimulations for intuitionistic temporal logics, Journal of Applied Logics 8(8):2265–2285, 2021.

    Google Scholar 

  8. Bezhanishvili, G., N. Bezhanishvili, D. Gabelaia, and A. Kurz, Bitopological duality for distributive lattices and Heyting algebras, Mathematical Structures in Computer Science 20(3):359–393, 2010.

    Article  Google Scholar 

  9. Borceux, F., Handbook of Categorical Algebra 1: Basic Category Theory, vol. 50 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge 1994.

  10. Boudou, J., M. Diéguez, and D. Fernández-Duque, A decidable intuitionistic temporal logic, in V. Goranko, and M. Dam, (eds.), 26th EACSL Annual Conference on Computer Science Logic (CSL 2017), vol. 82 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017, pp. 14:1–14:17.

  11. Burris, S., and H. P. Sankappanavar, A course in universal algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1981.

  12. Celani, S., and R. Jansana, Bounded distributive lattices with strict implication, MLQ Mathematical Logic Quarterly 51(3):219–246, 2005.

    Article  Google Scholar 

  13. Chajda, I., Algebraic axiomatization of tense intuitionistic logic, Central European Journal of Mathematics 9(5):1185–1191, 2011.

    Article  Google Scholar 

  14. Conradie, W., A. Palmigiano, S. Sourabh, and Z. Zhao, Canonicity and relativized canonicity via pseudo-correspondence: an application of alba. arXiv preprint arXiv:1511.04271 2015.

  15. Cross, C.B., Review: Nute donald. Conditional Logic. Handbook of Philosophical Logic, Volume II, Extensions of Classical Logic, edited by D. Gabbay, and F. Guenthner, Synthese Library, vol. 165, D. Reidel Publishing Company, Dordrecht, Boston, and Lancaster, 1984, pp. 387–439, The Journal of Symbolic Logic 54(4):1477–1479, 1989.

  16. Davies, R., A temporal logic approach to binding-time analysis, Journal of the ACM 64(1):1–45, 2017.

    Article  Google Scholar 

  17. Esakia, L., The modalized Heyting calculus: a conservative modal extension of the intuitionistic logic, Journal of Applied Non-Classical Logics 16(3-4):349–366, 2006.

    Article  Google Scholar 

  18. Esakia, L., Heyting algebras. Duality Theory, vol. 50 of Trends in Logic, Springer Cham, 2019.

  19. Ewald, W. B., Intuitionistic tense and modal logic, The Journal of Symbolic Logic 51(1):166–179, 1986.

    Article  Google Scholar 

  20. Fischer-Servi, G., On modal logic with an intuitionistic base, Studia Logica 36(3):141–149, 1977.

    Article  Google Scholar 

  21. Fitting, M. C., Intuitionistic Logic, Model Theory and Forcing, vol. 191 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam-London, 1969.

  22. Fernández-Duque, D., The intuitionistic temporal logic of dynamical systems, Logical Methods in Computer Science 14(3):3–35, 2018.

    Google Scholar 

  23. Ghilardi, S., and G. Meloni, Constructive canonicity in non-classical logics, Annals of Pure and Applied Logic 86(1):1–32, 1997.

    Article  Google Scholar 

  24. Harding, J., and G. Bezhanishvili, MacNeille completions of Heyting algebras, Houston Journal of Mathematics 30(4):937–952, 2004.

    Google Scholar 

  25. Iemhoff, R., Preservativity logic: an analogue of interpretability logic for constructive theories, Mathematical Logic Quarterly: Mathematical Logic Quarterly 49(3): 230–249, 2003.

    Article  Google Scholar 

  26. Iemhoff, R., D. Jongh, and C. Zhou, Properties of intuitionistic provability and preservativity logics, Logic Journal of IGPL 13(6):615–636, 2005.

    Article  Google Scholar 

  27. Johnstone, P. T., Stone Spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge 1982.

  28. Kamide, N., and H. Wansing, Combining linear-time temporal logic with constructiveness and paraconsistency, Journal of Applied Logic 8(1):33–61, 2010.

    Article  Google Scholar 

  29. Kojima, K., and A. Igarashi, Constructive linear-time temporal logic: proof systems and Kripke semantics, Information and Computation 209(12):1491–1503, 2011.

    Article  Google Scholar 

  30. Konev, B., R. Kontchakov, F. Wolter, and M. Zakharyaschev, Dynamic topological logics over spaces with continuous functions, in M. Kracht, M. de Rijke, H, Wansing, and M. Zakharyaschev, (eds.), Advances in Modal Logic. Vol. 6, CSLI Publications, 2006, pp. 299–318.

  31. Kremer, P., A small counterexample in intuitionistic dynamic topological logic, 2004.

  32. Kremer, P., and G. Mints, Dynamic topological logic, in M. Aiello, I. Pratt-Hartmann, and J. Benthem, Handbook of Spatial Logics, Springer, 2007, pp. 565–606.

    Google Scholar 

  33. Litak, T., and A. Visser, Lewis meets Brouwer: constructive strict implication, Indagationes Mathematicae 29(1):36–90, 2018.

    Article  Google Scholar 

  34. Maier, P., Intuitionistic LTL and a new characterization of safety and liveness, in J. Marcinkowski, and A. Tarlecki, (eds.), Computer Science Logic: 18th International Workshop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz, Poland, September 2004, Proceedings, vol. 3210 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2004, pp. 295–309.

    Chapter  Google Scholar 

  35. Okada, M., A weak intuitionistic propositional logic with purely constructive implication, Studia Logica 46(4):371–382, 1987.

    Article  Google Scholar 

  36. Paiva, V., and H. Eades III, Constructive temporal logic, categorically, IfCoLog Journal of Logics and their Applications 4(4):1287, 2017.

    Google Scholar 

  37. Ruitenburg, W., Basic logic and fregean set theory, Dirk van Dalen Festschrift, Questiones Infinitae 5:121–142, 1992.

    Google Scholar 

  38. Simpson, A. K., The proof theory and semantics of intuitionistic modal logic, 1994.

  39. Visser, A., A propositional logic with explicit fixed points, Studia Logica 40: 155–175, 1981.

    Article  Google Scholar 

  40. Visser, A., Aspects of Diagonalization and Provability, PhD thesis, University of Utrecht, 1981.

Download references

Acknowledgements

We wish to thank Nick Bezhanishvili for his helpful suggestions and the anonymous referees whose suggestions helped to improve our presentation. The first author also gratefully acknowledges the support of the FWF project P 33548. He is also supported by the Czech Academy of Sciences (RVO 67985840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Alizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar Tabatabai, A., Alizadeh, M. & Memarzadeh, M. On a Generalization of Heyting Algebras I. Stud Logica (2024). https://doi.org/10.1007/s11225-024-10110-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11225-024-10110-8

Keywords

Navigation