Skip to main content
Log in

A Model Theory of Topology

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

An algebraization of the notion of topology has been proposed more than 70 years ago in a classical paper by McKinsey and Tarski, leading to an area of research still active today, with connections to algebra, geometry, logic and many applications, in particular, to modal logics. In McKinsey and Tarski’s setting the model theoretical notion of homomorphism does not correspond to the notion of continuity. We notice that the two notions correspond if instead we consider a preorder relation \( \sqsubseteq \) defined by \(a \sqsubseteq b\) if a is contained in the topological closure of b, for ab subsets of some topological space. A specialization poset is a partially ordered set endowed with a further coarser preorder relation \( \sqsubseteq \). We show that every specialization poset can be embedded in the specialization poset naturally associated to some topological space, where the order relation corresponds to set-theoretical inclusion. Specialization semilattices are defined in an analogous way and the corresponding embedding theorem is proved. Specialization semilattices have the amalgamation property. Some basic topological facts and notions are recovered in this apparently very weak setting. The interest of these structures arises from the fact that they also occur in many rather disparate contexts, even far removed from topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artemov, S., Modal logic in mathematics, in in P. Blackburn, J. van Benthem, and F. Wolter, (eds.), Handbook of Modal Logic, vol. 3 of Studies in Logic and Practical Reasoning, Elsevier B. V., Amsterdam, 2007, pp. 927–969.

  2. Barwise, J., and S. Feferman, (eds.), Model-Theoretic Logics, Perspectives in Mathematical Logic, Springer-Verlag, New York, 1985.

  3. van Benthem, J., and G. Bezhanishvili, Modal logics of space, in M. Aiello, I. Pratt-Hartmann, and J. van Benthem, (eds.), Handbook of Spatial Logics, Springer, Dordrecht, 2007, pp. 217–298.

    Chapter  Google Scholar 

  4. Bergman, C., Universal Algebra. Fundamentals and Selected Topics, Pure and Applied Mathematics (Boca Raton), vol. 301, CRC Press, Boca Raton, FL, 2012.

  5. Bezhanishvili, G., N. Bezhanishvili, and R. Iemhoff, Stable canonical rules, The Journal of Symbolic Logic 81:284–315, 2016.

    Article  Google Scholar 

  6. Bezhanishvili, G., N. Bezhanishvili, J. Lucero-Bryan, and J. Van Mill, The McKinsey-Tarski theorem for locally compact ordered spaces, The Bulletin of Symbolic Logic 27:187–211, 2021.

    Article  Google Scholar 

  7. Bezhanishvili, G., and W. H. Holliday, Locales, nuclei, and Dragalin frames, in L. Beklemishev, S. Demri, and A. Máté, (eds.), Advances in Modal Logic, Vol. 11, College Publications, London, 2016, pp. 177–196.

    Google Scholar 

  8. Bezhanishvili, G., and W. H. Holliday, A semantic hierarchy for intuitionistic logic, Indagationes Mathematicae (N.S.) 30:403–469, 2019.

  9. Bezhanishvili, G., R. Mines, and P. J. Morandi, Topo-canonical completions of closure algebras and Heyting algebras, Algebra Universalis 58:1–34, 2008.

    Article  Google Scholar 

  10. Blass, A., Combinatorial cardinal characteristics of the continuum, in M. Foreman, and A. Kanamori, (eds.), Handbook of Set Theory, Springer, Dordrecht, 2010, pp. 395–489.

    Chapter  Google Scholar 

  11. Blyth, T. S., Lattices and Ordered Algebraic Structures, Springer-Verlag, 2005.

  12. Caspard, N., B. Leclerc, and B. Monjardet, Finite Ordered Sets. Concepts, Results and Uses, vol. 144 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2012.

  13. Caspard, N., and B. Monjardet, The lattices of closure systems, closure operators, and implicational systems on a finite set: a survey, Discrete Applied Mathematics 127:241–269, 2003.

    Article  Google Scholar 

  14. Čech, E., Topological Spaces (Revised edition by Z. Frolík, and M. Katětov, Scientific editor: V. Pták, Editor of the English translation: C.O. Junge). Publishing House of the Czechoslovak Academy of Sciences, Prague; Interscience Publishers John Wiley & Sons, London-New York-Sydney, 1966.

  15. Celani, S., Quasi-modal algebras, Mathematica Bohemica 126:721–736, 2001.

    Article  Google Scholar 

  16. Chang, C., and H. J. Keisler, Continuous Model Theory, vol. 58 of Annals of Mathematics Studies, Princeton Univ. Press, Princeton, N.J., 1966.

  17. Conradie, W., A. Palmigiano and Z. Zhao, Sahlqvist via translation, Logical Methods in Computer Science 15(1):15–35, 2019.

    Google Scholar 

  18. Császár, Á., Generalized topology, generalized continuity, Acta Mathematica Hungarica 96:351–357, 2002.

  19. Delzell, C. N., O. Ighedo, and J. J. Madden, Conjunctive join-semilattices, Algebra Universalis 82:51, 2021.

    Article  Google Scholar 

  20. Di Concilio, A., Proximity: a powerful tool in extension theory, function spaces, hyperspaces, Boolean algebras and point-free geometry, in F. Mynard, and E. Pearl, (eds.), Beyond Topology, vol. 486 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 2009, pp. 89–114.

    Chapter  Google Scholar 

  21. Dow, A., and K. P. Hart, The Čech-stone compactifications of \(\mathbb{N}\) and \(\mathbb{R}\), chapter d-18, in K. P. Hart, J. Nagata, and J. E. Vaughan, (eds.), Encyclopedia of General Topology, Elsevier Science Publishers, B.V., Amsterdam, 2004.

  22. Edgar, G. A., The class of topological spaces is equationally definable, Algebra Universalis 3:139–146, 1973.

    Article  Google Scholar 

  23. Engelking, R., General Topology, vol. 60 of Mathematical Monographs, PWN—Polish Scientific Publishers, Warsaw, 1977.

  24. Erné, M., Closure, in F. Mynard, and E. Pearl, (eds), Beyond Topology, vol. 486 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 2009, pp. 163–238.

    Chapter  Google Scholar 

  25. Esakia, L., Heyting algebras, vol. 50 of Trends in Logic, Translated from the Russian edition (1985) by Anton Evseev, Springer, Cham, 2019.

  26. Fairtlough, M., and M. Mendler, Propositional lax logic, Information and Computation 137:1–33, 1997.

    Article  Google Scholar 

  27. Farah, I., Luzin gaps, Transactions of the American Mathematical Society 356:2197–2239, 2004.

    Article  Google Scholar 

  28. Frittella, S., Monotone Modal Logic & Friends, Ph.D. thesis, Universite d’Aix-Marseille, 2014.

  29. Gabbay, D. M., A. Kurucz, F. Wolter, and M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and Applications, vol. 148 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 2003.

    Google Scholar 

  30. Gabbay, D. M., and L. Maksimova, Interpolation and Definability. Modal and Intuitionistic Logics, vol. 46 of Oxford Logic Guides, The Clarendon Press, Oxford University Press, Oxford, 2005.

  31. Galatos, N., and C. Tsinakis, Equivalence of consequence relations: an order-theoretic and categorical perspective, The Journal of Symbolic Logic 74:780–810, 2009.

    Article  Google Scholar 

  32. Gierz, G., G., K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, Continuous Lattices and Domains, vol. 93 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2003.

  33. Goldblatt, R., and I. Hodkinson, Spatial logic of tangled closure operators and modal mu-calculus, Annals of Pure and Applied Logic 168:1032–1090, 2017.

    Article  Google Scholar 

  34. Grätzer, G., Lattice Theory: Foundation, Birkhäuser/Springer Basel AG, Basel, 2011.

    Book  Google Scholar 

  35. de Groot, J., Positive monotone modal logic, Studia Logica 109:829–857, 2021.

    Article  Google Scholar 

  36. Hartshorne, R., Algebraic Geometry, vol. 52 of Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1977.

  37. Harzheim, E., Ordered Sets, vol. 7 of Advances in Mathematics, New York, 2005.

  38. Hodges, W., Model Theory, vol. 42 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1993.

  39. Holliday, W. H., Three roads to complete lattices: orders, compatibility, polarity, Algebra Universalis 82:26, 2021.

    Article  Google Scholar 

  40. Iemhoff, R., Consequence relations and admissible rules, Journal of Philosophical Logic 45:327–348, 2016.

    Article  Google Scholar 

  41. Ivanova, T., Contact join-semilattices, Studia Logica 110:1219–1241, 2022.

  42. Jackson, M., Semilattices with closure, Algebra Universalis 52:1–37, 2004.

    Article  Google Scholar 

  43. Jansana, R., Propositional consequence relations and algebraic logic, The Stanford Encyclopedia of Philosophy (Spring 2011 Edition), Edward N. Zalta (ed.), https://plato.stanford.edu/archives/spr2011/entries/consequence-algebraic/

  44. Jeřábek, E., Canonical rules, The Journal of Symbolic Logic 74:1171–1205, 2009.

    Article  Google Scholar 

  45. Johnstone, P. T., Stone Spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1982.

  46. Jónsson, B., Universal relational systems, Mathematica Scandinavica 4:193–208, 1956.

    Article  Google Scholar 

  47. Jónsson, B., and A. Tarski, Boolean algebras with operators. I, American Journal of Mathematics 73:891–939, 1951.

    Article  Google Scholar 

  48. Kaplan, I., and P. Simon, Automorphism groups of finite topological rank, Transactions of the American Mathematical Society 372:2011–2043, 2019.

    Article  Google Scholar 

  49. Kikot, S., A. Kurucz, Y. Tanaka, F. Wolter, and M. Zakharyaschev, Kripke completeness of strictly positive modal logics over meet-semilattices with operators, The Journal of Symbolic Logic 84:533–588, 2019.

    Article  Google Scholar 

  50. Kronheimer, E. H., and R. Penrose, On the structure of causal spaces, Mathematical Proceedings of the Cambridge Philosophical Society 63:481–501, 1967.

    Article  Google Scholar 

  51. Kuratowski, C., Topologie. I. Espaces Métrisables, Espaces Complets, vol. 20 of Monografie Matematyczne, 2d edn., Warszawa-Wrocław, 1948.

  52. Lando, T., First order \(S4\) and its measure-theoretic semantics, Annals of Pure and Applied Logic 166:187–218, 2015.

    Article  Google Scholar 

  53. Lávička, T., and J. L. Verner, Completely separable MAD families and the modal logic of \(\beta \omega \), The Journal of Symbolic Logic 87:498–507, 2022.

    Article  Google Scholar 

  54. Lehrer, E., On a representation of a relation by a measure, Journal of Mathematical Economics 20:107–118, 1991.

    Article  Google Scholar 

  55. Lipparini, P., Existentially complete closure algebras, Bollettino dell’Unione Matematica Italiana D (6) 1:13–19, 1982.

    Google Scholar 

  56. Lipparini, P., Universal extensions of specialization semilattices, Categories and General Algebraic Structures with Applications 17:101–116, 2022.

    Google Scholar 

  57. Lipparini, P., Universal specialization semilattices, Quaestiones Mathematicae 46:2163-2176, 2022.

    Article  Google Scholar 

  58. Lipparini, P., Preservation of Superamalgamation by Expansions, arXiv:2203.10570v3, 1–20, 2022.

  59. Lipparini, P., Comparable Binary Relations and the Amalgamation Property, arXiv:2301.12482, 1–13, 2022.

  60. Menchón, P., and S. Celani, Monotonic modal logics with a conjunction, Archive for Mathematical Logic 60:857–877, 2021.

    Article  Google Scholar 

  61. McKinsey, J. C. C., and A. Tarski, The algebra of topology, Annals of Mathematics 45:141–191, 1944.

    Article  Google Scholar 

  62. McKinsey, J. C. C., and A. Tarski, Some theorems about the sentential calculi of Lewis and Heyting, The Journal of Symbolic Logic 13:1–15, 1948.

    Article  Google Scholar 

  63. Mielants, W., Can the best of all possible worlds be a random structure? Logique et Analyse, Nouv. Sér. 36:61–73, 1993.

    Google Scholar 

  64. Montalbán, A., and A. Nies, Borel structures: a brief survey, in N. Greenberg, J. D. Hamkins, D. Hirschfeldt, and R. Miller, (eds.), Effective Mathematics of the Uncountable, vol. 41 of Lecture Notes in Logic, Association for Symbolic Logic, La Jolla, CA, 2013, pp. 124–134.

    Chapter  Google Scholar 

  65. Mynard, F., and E. Pearl, (eds.), Beyond Topology, vol. 486 of Contemporary Mathematics, American Mathematical Society, Providence, RI, 2009.

  66. Nagata, J., Modern General Topology. Second Revised Edition, vol. 33 of North-Holland Mathematical Library, Second Revised Edition, North-Holland Publishing Co., Amsterdam, 1985.

    Google Scholar 

  67. Nowak, M., A syntactic approach to closure operation, Bulletin of the Section of Logic (Łódź) 46:219–232, 2017.

    Google Scholar 

  68. Nowak, M., Disjunctive and conjunctive multiple-conclusion consequence relations, Studia Logica 108:1125–1143, 2020.

    Article  Google Scholar 

  69. Panangaden, P., Causality in physics and computation, Theoretical Computer Science, 546:10–16, 2014.

    Article  Google Scholar 

  70. Peters, J. F., and P. Wasilewski, Tolerance spaces: origins, theoretical aspects and applications, Information Sciences 195:211–225, 2012.

    Article  Google Scholar 

  71. Picado, J., and A. Pultr, Frames and Locales. Topology Without Points, Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2012.

  72. Picado, J., and A. Pultr, Separation in Point-Free Topology, Birkhäuser/Springer, Cham, 2021.

    Book  Google Scholar 

  73. Ranzato, F., Closures on CPOs form complete lattices, Information and Computation 152:236–249, 1999.

    Article  Google Scholar 

  74. Rasiowa, H., and R. Sikorski, The mathematics of Metamathematics, vol. 41 of Monografie Matematyczne, Państwowe Wydawnictwo Naukowe, Warsaw, 1963.

  75. Russell, J. S., On the probability of plenitude, Journal of Philosophy 117:267–292, 2020.

    Article  Google Scholar 

  76. Sambin, G., and S. Gebellato, A preview of the basic picture: a new perspective on formal topology, in T. Altenkirch, W. Naraschewski, and B. Reus, (eds.), Types for Proofs and Programs (IRSEE, 1998), vol. 1657 of Lecture Notes in Lecture Notes in Computer Science, Springer, Berlin, 1999. pp. 194–207.

  77. Santocanale, L., A duality for finite lattices, HAL 00432113, 1–37, 2009.

    Google Scholar 

  78. Scowcroft, P., Existentially closed closure algebras, Notre Dame Journal of Formal Logic 61:623–661, 2020.

    Article  Google Scholar 

  79. Servi, M., Algebre di Fréchet: Una classe di algebre booleane con operatore, Rendiconti del Circolo Matematico di Palermo (2) 14:335–366, 1965.

    Article  Google Scholar 

  80. Sikorski, R., Closure algebras, Fundamenta Mathematicae 36:165–206, 1949.

    Article  Google Scholar 

  81. Šlapal, J., On categories of ordered sets with a closure operator, Publicationes Mathematicae Debrecen 78:61–69, 2011.

    Article  Google Scholar 

  82. Stone, M. H., The theory of representations for Boolean algebras, Transactions of the American Mathematical Society 40:37–111, 1936.

    Google Scholar 

  83. Tarski, A., Logic, Semantics, Metamathematics. Papers from 1923 to 1938, in J. Corcoran, (ed.), Hackett Publishing Co., Indianapolis, IN, 1983.

  84. Urquhart, A., A topological representation theory for lattices, Algebra Universalis 8:45–58, 1978.

  85. Vickers, S., Topology via Logic, vol. 5 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, 1989.

  86. Wójcicki, R., Theory of Logical Calculi: Basic Theory of Consequence Operations, vol. 199 of Synthese Library, Kluwer Academic Publishers Group, Dordrecht, 1988.

  87. Ziegler, M., Topological model theory, in J. Barwise, and S. Feferman, (eds.), Model-Theoretic Logics, Perspectives in Mathematical Logic, Springer-Verlag, New York, 1985, pp. 557–577.

    Google Scholar 

Download references

Acknowledgements

We express our gratitude to anonymous referees for a careful reading of the manuscript, for many useful comments and suggestions, in particular, suggestions for further references. The advices of the referees have led to significant improvements of the manuscript, in particular making it more concise and historically more complete.

Funding

This work has been performed under the auspices of G.N.S.A.G.A. and has been partially supported by PRIN 2012 “Logica, Modelli e Insiemi”. The author acknowledges the MIUR Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lipparini.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by Yde Venema.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipparini, P. A Model Theory of Topology. Stud Logica (2024). https://doi.org/10.1007/s11225-024-10107-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11225-024-10107-3

Keywords

Navigation