Skip to main content
Log in

Reconstructing the Topology of the Elementary Self-embedding Monoids of Countable Saturated Structures

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Every transformation monoid comes equipped with a canonical topology, the topology of pointwise convergence. For some structures, the topology of the endomorphism monoid can be reconstructed from its underlying abstract monoid. This phenomenon is called automatic homeomorphicity. In this paper we show that whenever the automorphism group of a countable saturated structure has automatic homeomorphicity and a trivial center, then the monoid of elementary self-embeddings has automatic homeomorphicity, too. As a second result we strengthen a result by Lascar by showing that whenever \({\mathbf {A}}\) is a countable \(\aleph _0\)-categorical G-finite structure whose automorphism group has a trivial center and if \({\mathbf {B}}\) is any other countable structure, then every isomorphism between the monoids of elementary self-embeddings is a homeomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barham, R., Automatic homeomorphicity of locally moving clones, ArXiv e-prints, 2015.

  2. Behrisch, M., J. K. Truss, and E. Vargas-García, Reconstructing the topology on monoids and polymorphism clones of the rationals, Studia Logica 105(1): 65–91, 2017.

  3. Bodirsky, M., D. Evans, M. Kompatscher, and M. Pinsker, A counterexample to the reconstruction of \(\omega \)-categorical structures from their endomorphism monoids, ArXiv e-prints, 2015.

  4. Bodirsky, M., and M. Pinsker, Topological Birkhoff, Trans. Amer. Math. Soc. 367(4): 2527–2549, 2015.

  5. Bodirsky, M., M. Pinsker, and A. Pongrácz, Reconstructing the topology of clones, Trans. Amer. Math. Soc. 369(5): 3707–3740, 2017.

    Article  Google Scholar 

  6. Cameron, P. J., and J. Nešetřil, Homomorphism-homogeneous relational structures, Combin. Probab. Comput. 15(1-2): 91–103, 2006.

    Article  Google Scholar 

  7. Dixon, J. D., P. M. Neumann, and S. Thomas, Subgroups of small index in infinite symmetric groups, Bull. London Math. Soc., 18(6): 580–586, 1986.

    Article  Google Scholar 

  8. Dolinka, I., and D. Mašulović, Properties of the automorphism group and a probabilistic construction of a class of countable labeled structures, Journal of Combinatorial Theory, Series A 119(5): 1014–1030, 2012.

    Article  Google Scholar 

  9. Evans, D. M., and P. R. Hewitt, Counterexamples to a conjecture on relative categoricity, Ann. Pure Appl. Logic 46(2): 201–209, 1990.

    Article  Google Scholar 

  10. Herwig, B., Extending partial isomorphisms for the small index property of many \(\omega \)-categorical structures, Israel J. Math. 107: 93–123, 1998.

    Article  Google Scholar 

  11. Hodges, W., Model theory, vol. 42 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1993.

  12. Hodges, W., I. Hodkinson, D. Lascar, and S. Shelah, The small index property for \(\omega \)-stable \(\omega \)-categorical structures and for the random graph, J. Lond. Math. Soc., II. Ser. 48(2): 204–218, 1993.

    Article  Google Scholar 

  13. Kechris, A. S., and C. Rosendal, Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proceedings of the London Mathematical Society 94(2): 302–350, 2007.

    Article  Google Scholar 

  14. Lascar, D., Le demi-groupe des endomorphismes d’une structure \(\aleph _0\)-catégorique, in: M. Giraudet, (ed.). Actes de la Journée Algèbre Ordonnée (Le Mans, 1987) 1989, pp. 33–43.

  15. Lascar, D., Autour de la propriété du petit indice. (On the small index property)., Proc. Lond. Math. Soc., III. Ser. 62(1): 25–53, 1991.

    Article  Google Scholar 

  16. Macpherson, D., A survey of homogeneous structures, Discrete Math. 311(15): 1599–1634, 2011.

    Article  Google Scholar 

  17. Pech, C., and M. Pech, Polymorphism clones of homogeneous structures (universal homogeneous polymorphisms and automatic homeomorphicity), ArXiv e-prints, 2015.

  18. Pech, C., and M. Pech, On automatic homeomorphicity for transformation monoids, Monatsh. Math. 179(1): 129–148, 2016.

    Article  Google Scholar 

  19. Pöschel, R., A general Galois theory for operations and relations and concrete characterization of related algebraic structures, Report (Akademie der Wissenschaften der DDR. Zentralinstitut für Mathematik und Mechanik), Akademie der Wissenschaften der DDR, 1980.

  20. Rosendal, C., Automatic continuity of group homomorphisms, Bull. Symbolic Logic 15(2): 184–214, 2009.

    Article  Google Scholar 

  21. Solecki, S., Extending partial isometries, Israel J. Math. 150: 315–331, 2005.

    Article  Google Scholar 

  22. Truss, J. K., Infinite permutation groups. II. Subgroups of small index, J. Algebra 120(2): 494–515, 1989.

    Article  Google Scholar 

  23. Truss, J. K, and E. Vargas-García, Reconstructing the topology on monoids and polymorphism clones of reducts of the rationals, ArXiv e-prints, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Pech.

Additional information

Presented by Daniele Mundici

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pech, C., Pech, M. Reconstructing the Topology of the Elementary Self-embedding Monoids of Countable Saturated Structures. Stud Logica 106, 595–613 (2018). https://doi.org/10.1007/s11225-017-9756-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-017-9756-6

Keywords

Navigation