Skip to main content
Log in

Restricted Priestley Dualities and Discriminator Varieties

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Anyone who has ever worked with a variety \(\varvec{\mathscr {A}}\) of algebras with a reduct in the variety of bounded distributive lattices will know a restricted Priestley duality when they meet one—but until now there has been no abstract definition. Here we provide one. After deriving some basic properties of a restricted Priestley dual category \(\varvec{\mathscr {X}}\) of such a variety, we give a characterisation, in terms of \(\varvec{\mathscr {X}}\), of finitely generated discriminator subvarieties of \(\varvec{\mathscr {A}}\). As an application of our characterisation, we give a new proof of Sankappanavar’s characterisation of finitely generated discriminator varieties of distributive double p-algebras. A substantial portion of the paper is devoted to the application of our results to Cornish algebras. A Cornish algebra is a bounded distributive lattice equipped with a family of unary operations each of which is either an endomorphism or a dual endomorphism of the bounded lattice. They are a natural generalisation of Ockham algebras, which have been extensively studied. We give an external necessary-and-sufficient condition and an easily applied, completely internal, sufficient condition for a finite set of finite Cornish algebras to share a common ternary discriminator term and so generate a discriminator variety. Our results give a characterisation of discriminator varieties of Ockham algebras as a special case, thereby yielding Davey, Nguyen and Pitkethly’s characterisation of quasi-primal Ockham algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories: the Joy of Cats. Available at http://katmat.math.uni-bremen.de/acc.

  2. Baker, K. A., and A. F. Pixley, Polynomial interpolation and the Chinese remainder theorem for algebraic systems, Math. Z. 143:165–174, 1975.

    Article  Google Scholar 

  3. Burris, S., and H. P. Sankappanavar, A Course in Universal Algebra. The Millennium Edition, 2012 Update. Available from https://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html.

  4. Clark, D. M., and B. A. Davey, Natural Dualities for the Working Algebraist, Cambridge University Press, 1998.

    Google Scholar 

  5. Cornish, W. H., Monoids acting on distributive lattices, manuscript (invited talk at the annual meeting of the Austral. Math. Soc., May 1977).

  6. Cornish, W. H., Antimorphic Action: Categories of Algebraic Structures with Involutions or Anti-endomorphisms, Research and Exposition in Mathematics, vol. 12, Heldermann, 1986.

  7. Cornish, W. H., and P. R. Fowler, Coproducts of De Morgan algebras, Bull. Aust. Math. Soc. 16:1–13, 1977.

    Article  Google Scholar 

  8. Cornish, W. H., and P. R. Fowler, Coproducts of Kleene algebras, J. Austral. Math. Soc. (Ser. A) 27:209–220, 1979.

  9. Davey, B. A., Subdirectly irreducible distributive double p-algebras, Algebra Universalis 8:73–88, 1978.

    Article  Google Scholar 

  10. Davey, B. A., and J. C. Galati, A coalgebraic view of Heyting duality, Studia Logica 75:259–270, 2003.

    Article  Google Scholar 

  11. Davey, B. A., and M. Haviar, Applications of Priestley duality in transferring optimal dualities, Studia Logica 78:213–236, 2004.

    Article  Google Scholar 

  12. Davey, B. A., L. T. Nguyen, and J. G. Pitkethly, Counting relations on Ockham algebras, Algebra Universalis 74:35–63, 2015.

    Article  Google Scholar 

  13. Davey, B. A., and H. A. Priestley, Generalised piggyback dualities and applications to Ockham algebras, Houston J. Math. 13:151–198, 1987.

    Google Scholar 

  14. Davey, B. A., and H. A. Priestley, Optimal natural dualities, Trans. Amer. Math. Soc. 338:655–677, 1993.

    Article  Google Scholar 

  15. Davey, B. A., and H. A. Priestley, Optimal natural dualities for varieties of Heyting algebras, Studia Logica 56:67–96, 1996.

    Article  Google Scholar 

  16. Davey, B. A., and H. A. Priestley, Introduction to Lattices and Order, 2nd edn. Cambridge University Press, 2002.

  17. Davey, B. A., V. J. Schumann, and H. Werner, From the subalgebras of the square to the discriminator, Algebra Universalis 28:500–519, 1991.

    Article  Google Scholar 

  18. Esakia, L. L., Topological Kripke models, Soviet Math. Dokl. 15:147–151, 1974.

    Google Scholar 

  19. Foster, A. L., and A. Pixley, Semi-categorical algebras. I. Semi-primal algebras, Math. Z. 85:147–169, 1964.

    Article  Google Scholar 

  20. Katriňák, T., The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis 3:238–246, 1973.

    Article  Google Scholar 

  21. Martínez, N. G., The Priestley duality for Wajsberg algebras, Studia Logica 49:31–46, 1990.

    Article  Google Scholar 

  22. Martínez, N. G., and H. A. Priestley, On Priestley spaces of lattice-ordered algebraic structures, Order 15:297–323, 1998.

    Article  Google Scholar 

  23. McKenzie, R., and M. Valeriote, The Structure of Decidable Locally Finite Varieties, Progress in Mathematics, vol. 79. Birkhäuser, 1989.

  24. Pixley, A. F., Functionally complete algebras generating distributive and permutable classes, Math. Z. 114:361–372, 1970.

    Article  Google Scholar 

  25. Pixley, A. F., The ternary discriminator function in universal algebra, Math. Ann. 191:167–180, 1971.

    Article  Google Scholar 

  26. Priestley, H. A., Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2:186–190, 1970.

    Article  Google Scholar 

  27. Priestley, H. A., Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. (3) 24:507–530, 1972.

    Article  Google Scholar 

  28. Priestley, H. A., Stone lattices: a topological approach, Fund. Math. 84:127–143, 1974.

    Google Scholar 

  29. Priestley, H. A., The construction of spaces dual to pseudocomplemented distributive lattices, Quart. J. Math. Oxford Ser. (2) 26:215–228, 1975.

    Article  Google Scholar 

  30. Priestley, H. A., Ordered sets and duality for distributive lattices, in M. Pouzet and D. Richard (eds.), Orders: Description and Roles (L’Arbresle, 1982). North-Holland Math. Stud., vol. 99, pp. 39–60. North-Holland, 1984.

  31. Priestley, H. A., Varieties of distributive lattices with unary operations. I., J. Austral. Math. Soc. Ser. A 63:165–207, 1997.

    Article  Google Scholar 

  32. Priestley, H. A., and R. Santos, Varieties of distributive lattices with unary operations. II., Portugal. Math. 55:135–166, 1998.

    Google Scholar 

  33. Sankappanavar, H. P., Heyting algebras with dual pseudocomplementation, Pacific J. Math. 117:405–415, 1985.

    Article  Google Scholar 

  34. Taylor, C. J., Discriminator varieties of double Heyting algebras, Rep. Math. Logic 51:3–14, 2016.

    Google Scholar 

  35. Urquhart, A., Distributive lattices with a dual homomorphic operation, Studia Logica 38:201–209, 1979.

    Article  Google Scholar 

  36. Werner, H., Eine Charakterisierung funktional vollständiger Algebren, Arch. Math. (Basel) 21:381–385, 1970.

    Article  Google Scholar 

  37. Werner, H., Discriminator-algebras. Algebraic Representation and Model Theoretic Properties, Studien zur Algebra und ihre Anwendungen, Band 6, Akademie, 1978.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Davey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davey, B.A., Gair, A. Restricted Priestley Dualities and Discriminator Varieties. Stud Logica 105, 843–872 (2017). https://doi.org/10.1007/s11225-017-9713-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-017-9713-4

Keywords

Mathematics Subject Classification

Navigation