Skip to main content
Log in

Split Hopkinson Pressure Bar (SHPB) Test and Different Modeling Methods of Aluminum Honeycomb Materials

  • Published:
Strength of Materials Aims and scope

This paper uses the Split Hopkinson Pressure Bar (SHPB) test to analyze the aluminum honeycomb’s dynamic and failure behavior under different strain rates. At the same time, we propose a modeling method. The representative volume element (RVE) models the complex materials. On this basis, the equivalent material parameters of complex materials are calculated. Taking the aluminum honeycomb material as an example, we use the equivalent material parameters calculated by the representative volume element of aluminum honeycomb to construct the macro-model of the aluminum honeycomb and compare it with the refined model of aluminum honeycomb. According to the SHPB test of aluminum honeycomb, the finite element models are compared and calibrated, and the accuracy of the finite element model is verified. It is expected to provide a reference for applying aluminum honeycomb materials in various fields, the dynamic behavior of aluminum honeycomb, and the combined use of multi-scale finite element modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. S. D. Papka and S. Kyriakides, “In-plane compressive response and crushing of honeycomb,” J. Mech. Phys. Solids, 42, No.10, 1499-1532 (2015).

    Article  Google Scholar 

  2. S. D. Papka and S. Kyriakides, “Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb,” Acta Mater., 46, No.8, 2765-2776 (1998).

    Article  CAS  Google Scholar 

  3. E. Wu and W. S. Jiang, “Axial crush of metallic honeycombs,” Int. J. Impact Eng., 19, No.5-6, 439-456(1997).

    Article  Google Scholar 

  4. A. Wilbert, W. Y. Jang, S. Kyriakides, et al., “Buckling and progressive crushing of laterally loaded honeycomb,” Int. J. Solids Struct., 48, 5, 803-816 (2011).

    Article  Google Scholar 

  5. S. Xu, J. H. Beynon, D. Ruan, et al., “Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs,” Compos. Struct, 94, 8, 2326-2336 (2012).

    Article  Google Scholar 

  6. M. Alkhader, W. Abuzaid, M. Elyoussef, et al., “Localized strain fields in honeycomb materials with convex and concaved cells,” Eur. J. Mech. A Solids - A/Solids, 80, 103890 (2019).

    Article  Google Scholar 

  7. B. Li, Y. Wei, F. Meng, et al., “Atomistic simulations of vibration and damping in three-dimensional graphene honeycomb nanomechanical resonators,” Superlattices Microstruct., 139, Mar, 106420.1-106420.7 (2020).

  8. X. E. Guo and L. J. Gibson, “Behavior of intact and damaged honeycombs: a finite element study,” Int. J. Mech. Sci., 41, 1, 85-105(1999).

    Article  Google Scholar 

  9. D. H. Chen and S. Ozaki, “Analysis of in-plane elastic modulus for a hexagonal honeycomb core: Effect of core height and proposed analytical method,” Compos. Struct., 88, 1, 17-25 (2009).

    Article  Google Scholar 

  10. A. Harkatia, D. Boutagougaa, E. Harkati, et al., “In-plane elastic constants of a new curved cell walls honeycomb concept – ScienceDirect,” Thin Wall. Struct., 149, 106613 (2019).

    Article  Google Scholar 

  11. P. S. Farrugia, R. Gatt, S. D. Vrieze, et al., “Edge effects of a hexagonal honeycomb on the Poisson’s ratio and Young modulus,” Phys. Status Solidi (b), 257, 1900511.1- 1900511.15 (2020).

  12. P. T. Wu, C. Q. Wu, Z. X. Liu, et al., “Numerical simulation of SHPB test of ultra-high performance fiber reinforced concrete with the meso-scale model” (in Chinese), Sci. Sin-Phys Mech. Astron., 50, 024614 (2020).

  13. N. Jones, “Recent progress in the dynamic plastic behaviour of structures, Part Iv,” Shock Vib., 10, No. 9, 21-33 (1985).

    Article  Google Scholar 

  14. R. Wang and C. Q. Ru, “An energy criterion for the dynamic plastic buckling of circular cylinders under impulsive loading,” Metal Forming and Impact Mechanics, 213-223 (1985).

  15. W. Abramowicz and N. Jones, “Dynamic axial crushing of square tubes,” Int. J. Impact Eng., 2, No. 2, 179-208 (1984).

    Article  Google Scholar 

  16. W. Abramowicz and N. Jones. “Dynamic axial crushing of circular tubes,” Int. J. Impact Eng., 2, No. 3, 263-281 (1984).

    Article  Google Scholar 

  17. W. Abramowicz, “Dynamic progressive buckling of circular and square tubes,” Int. J. Impact Eng., 4, No. 4, 243–270 (1986).

    Article  Google Scholar 

  18. J. J. Harrigan, S. R. Reid, and C. Peng, “Inertia effects in impact energy absorbing materials and structures,” Int. J. Impact Eng., 22, 9/10, 955-979 (1999).

    Article  Google Scholar 

  19. S. T. Hong, J. Pan, T. Tyan, et al., “Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads,” Int. J. Plast., 24, No. 1, 89-117 (2008).

    Article  CAS  Google Scholar 

  20. S. L. Omairey, P. D. Dunning, and S. Srinivas, “Development of an ABAQUS plug-in tool for periodic RVE homogenization,” Eng. Comput., 35, No. 2, 567-577(2019).

    Article  Google Scholar 

  21. D. K. Francis, W. R. Whittington, Lawrimore, et al., “Split Hopkinson pressure bar graphical analysis tool,” Exp. Mech., 57, 179–183 (2017).

Download references

Acknowledgment

This work was supported by the National Key R&D Program (2017YFC0703605) and the Key R&D Program of the Shandong Province of China (2018GSF117029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Zhang.

Additional information

Translated from Problemy Mitsnosti, No. 1, p. 7, January – February, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Zhang, J.G., Liang, H.Z. et al. Split Hopkinson Pressure Bar (SHPB) Test and Different Modeling Methods of Aluminum Honeycomb Materials. Strength Mater 54, 33–40 (2022). https://doi.org/10.1007/s11223-022-00375-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-022-00375-6

Keywords

Navigation