Skip to main content
Log in

End Hemispherical Cavities Roller: A Comparative Evaluation of Prospects of Higher Fatigue Life

  • Published:
Strength of Materials Aims and scope

Since fatigue life is the pivotal parameter in rolling element bearings, an enhancement in fatigue life has been enviable always. The flexibility of rolling elements can aid in reduction of contact stresses which eventually can increase fatigue life of rolling element bearings and that led to the hollow roller concept, however hollow roller concept encountered limitations in applications due to its catastrophic fractures at relatively lower loading conditions. Thus, the concept of end hemispherical cavities (EHC) roller, which possesses enough strength against such catastrophic failures along with probability of higher fatigue life than solid roller, has been treated further. Correspondingly, the present paper discusses the methodology for predicting fatigue life of rolling element bearings and employs the understanding of fatigue life models for comparing performance of EHC roller concept with other variants from fatigue life aspect. The simulations were performed for variants considered ensuing validation of methodology by exercising analytical results of Hertzian contact pressure. The stressed volume and the magnitude of decisive stress were emphasized to gauge performance of variants. Attained results indicated that EHC roller concept has prospects of transcending fatigue life of solid roller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

E I, E II :

– elastic moduli of the materials of contacting bodies I and II, respectively (MPa)

L :

– life of bearings, million revolutions

A :

– material constant

τ:

– failure-causing stress (MPa)

τu :

– threshold value of failure-causing stress (MPa)

c :

– stress exponent

h :

– depth exponent

e :

– Weibull slope

Z :

– depth of occurrence of maximal stress or weighted average depth (mm)

Q :

– normal force between roller and race (N)

b :

– semi-contact width of contact area (mm)

l :

– length of cylindrical rolling element (mm)

ξI, ξII :

– Poisson’s ratio for materials of contacting bodies I and II, respectively

σmax :

– maximum Hertzian contact stress (MPa)

∑ρ:

– curvature sum (mm–1)

37H:

– hollow roller with 37% hollowness

61H:

– hollow roller with 61% hollowness

CRB:

– cylindrical roller bearings

DGBB:

– deep-groove ball bearings

EHC:

– end hemispherical cavities (roller)

RCF:

– rolling contact fatigue

SVP:

– stress-volume product

SVPR:

– stress-volume product ratio

TRB:

– tapered roller bearings

References

  1. X. Ai, “Rolling element bearings, history,” in: Q. J. Wang and Y.-W. Chung (Eds.), Encyclopedia of Tribology, Springer US, Boston, MA (2013), pp. 2932–2937.

    Chapter  Google Scholar 

  2. L. Houpert, “Rolling bearing fatigue life, effect of profiles, effect of surface roughness, effect of residual stress,” in: Q. J. Wang and Y.-W. Chung (Eds.), Encyclopedia of Tribology, Springer US, Boston, MA (2013), pp. 2824–2831.

    Chapter  Google Scholar 

  3. T. A. Harris and M. N. Kotzalas, Essential Concepts of Bearing Technology, CRC Press, Boca Raton, FL (2006).

    Book  Google Scholar 

  4. F. Pape, O. Maiss, B. Denkena, and G. Poll, “Enhancement of roller bearing fatigue life by innovative production processes,” Ind. Lubr. Tribol., 71, No. 8, 1003–1006 (2019).

    Article  Google Scholar 

  5. V.-C. Tong, S.-W. Kwon, and S.-W. Hong, “Fatigue life of cylindrical roller bearings,” P. I. Mech. Eng. J-J. Eng., 231, No. 5, 623–636 (2016).

  6. F. B. Oswald, E. V. Zaretsky, and J. V. Poplawski, “Relation between residual and hoop stresses and rolling bearing fatigue life,” Tribol. Trans., 57, No. 4, 749–765 (2014).

    Article  CAS  Google Scholar 

  7. F. B. Oswald, E. V. Zaretsky, and J. V. Poplawski, “Effect of internal clearance on load distribution and life of radially loaded ball and roller bearings,” Tribol. Trans., 55, No. 2, 245–265 (2012).

    Article  CAS  Google Scholar 

  8. V.-C. Tong and S.-W. Hong, “Statistical investigation into the effects of distributed roller diameter error on the fatigue life of tapered roller bearings,” J. Mech. Sci. Technol., 31, No. 12, 5977–5985 (2017).

    Article  Google Scholar 

  9. Z. Ye and L. Wang, “Optimization analysis on assembly interference of cylindrical roller bearings,” Adv. Mech. Eng., 7, No. 7, 1–13 (2015).

  10. G. Chen and J. Wen, “Effects of size and raceway hardness on the fatigue life of large rolling bearing,” J. Mech. Sci. Technol., 29, No. 9, 3873–3883 (2015).

    Article  Google Scholar 

  11. M. Yakout, M. G. A. Nassef, and S. Backar, “Effect of clearances in rolling element bearings on their dynamic performance, quality and operating life,” J. Mech. Sci. Technol., 33, No. 5, 2037–2042 (2019).

    Article  Google Scholar 

  12. V. B. Balyakin, E. P. Zhilnikov, B. B. Kosenok, and A. V. Lavrin, “Study of the influence of ring misalignment in rolling bearings on frictional torque and the fatigue life of supports,” J. Frict. Wear, 38, No. 1, 7–12 (2017).

    Article  Google Scholar 

  13. M. Jacobson and F. Gunnberg, “Effects of hard turning on the fatigue life of ball bearings,” P. I. Mech. Eng. B-J. Eng., 218, No. 12, 1855–1859 (2004).

  14. B. Warda and A. Chudzik, “Effect of ring misalignment on the fatigue life of the radial cylindrical roller bearing,” Int. J. Mech. Sci., 111–112, 1–11 (2016).

    Article  Google Scholar 

  15. H. Fujiwara, T. Kobayashi, T. Kawase, and K. Yamauchi, “Optimized logarithmic roller crowning design of cylindrical roller bearings and its experimental demonstration,” Tribol. Trans., 53, No. 6, 909–916 (2010).

    Article  CAS  Google Scholar 

  16. W. Zhang, S. Deng, G. Chen, and Y. Cui, “Study on the impact of roller convexity excursion of high-speed cylindrical roller bearing on roller’s dynamic characteristics,” Mech. Mach. Theory, 103, 21–39 (2016).

    Article  Google Scholar 

  17. F. B. Oswald, E. V. Zaretsky, and J. V. Poplawski, “Effect of roller geometry on roller bearing load–life relation,” Tribol. Trans., 57, No. 5, 928–938 (2014).

    Article  CAS  Google Scholar 

  18. J. V. Poplawski, S. M. Peters, and E. V. Zaretsky, “Effect of roller profile on cylindrical roller bearing life prediction – Part II: Comparison of roller profiles,” Tribol. Trans., 44, No. 3, 417–427 (2001).

    Article  CAS  Google Scholar 

  19. T. A. Harris and S. F. Aaronson, “An analytical investigation of cylindrical roller bearings having annular rollers,” Tribol. Trans., 10, No. 3, 235–242 (1967).

    Google Scholar 

  20. E. N. Bamberger and R. J. Parker, “Effect of wall thickness and material on flexural fatigue of hollow rolling elements,” J. Tribol., 100, No. 1, 39–46 (1978).

    Google Scholar 

  21. M. T. Solanki and D. P. Vakharia, “Development of a mathematical model to determine optimum hollowness in layered cylindrical hollow rolling element using FE analysis,” Ind. Lubr. Tribol., 70, No. 4, 733–745 (2018).

    Article  Google Scholar 

  22. X. Ai, “Failure mechanisms of rolling element bearings,” in: Q. J. Wang and Y.-W. Chung (Eds.), Encyclopedia of Tribology, Springer US, Boston, MA (2013), pp. 1006–1014.

    Chapter  Google Scholar 

  23. Y. S. Kang, “Rolling bearing contact fatigue,” in: Q. J. Wang and Y.-W. Chung (Eds.), Encyclopedia of Tribology, Springer US, Boston, MA (2013), pp. 2820–2824.

    Chapter  Google Scholar 

  24. F. Sadeghi, B. Jalalahmadi, T. S. Slack, et al., “A review of rolling contact fatigue,” J. Tribol., 131, 041403 (2009), https://doi.org/10.1115/1.3209132.

    Article  Google Scholar 

  25. J. V. Poplawski, S. M. Peters, and E. V. Zaretsky, “Effect of roller profile on cylindrical roller bearing life prediction – Part I: Comparison of bearing life theories,” Tribol. Trans., 44, No. 3, 339–350 (2001).

    Article  CAS  Google Scholar 

  26. T. A. Harris and W. K. Yu, “Lundberg–Palmgren fatigue theory: Considerations of failure stress and stressed volume,” J. Tribol., 121, No. 1, 85–89 (1999).

    Article  CAS  Google Scholar 

  27. E. Ioannides and T. A. Harris, “A new fatigue life model for rolling bearings,” J. Tribol., 107, No. 3, 367–377 (1985).

    Article  Google Scholar 

  28. P. K. Gupta and E. V. Zaretsky, “New stress-based fatigue life models for ball and roller bearings,” Tribol. Trans., 61, No. 2, 304–324 (2018).

    Article  CAS  Google Scholar 

  29. T. A. Harris and R. M. Barnsby, “Life ratings for ball and roller bearings,” P. I. Mech. Eng. J-J. Eng., 215, No. 6, 577–595 (2001).

  30. Y. B. Guo and C. R. Liu, “Mechanical properties of hardened AISI 52100 steel in hard machining processes,” J. Manuf. Sci. Eng., 124, No. 1, 1–9 (2001).

    Article  Google Scholar 

  31. T. A. Harris, “On the effectiveness of hollow balls in high-speed thrust bearings,” Tribol. Trans., 11, No. 4, 290–294 (1968).

    Google Scholar 

  32. T. A. Harris and M. N. Kotzalas, Advanced Concepts of Bearing Technology: Rolling Bearing Analysis, CRC Press, Boca Raton, FL (2006).

    Book  Google Scholar 

  33. W. M. A. Jadayil and N. M. Jaber, “Numerical prediction of optimum hollowness and material of hollow rollers under combined loading,” Mater. Design, 31, No. 3, 1490–1496 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Chhotani.

Additional information

Translated from Problemy Prochnosti, No. 3, pp. 118 – 128, May – June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhotani, P.C., Vakharia, D.P. End Hemispherical Cavities Roller: A Comparative Evaluation of Prospects of Higher Fatigue Life. Strength Mater 53, 491–501 (2021). https://doi.org/10.1007/s11223-021-00310-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-021-00310-1

Keywords

Navigation