Skip to main content
Log in

Solution to the Task of Elastic Axial Compression–Tension of the Composite Multilayered Cylindrical Beam

  • Published:
Strength of Materials Aims and scope

The authors present an accurate solution to the task of elastic axial compression (tension) of the multilayered cylindrical beam with axial orthotropic layers surrounding a central core. The description of the geometry and structural framework of the beam requires the employment of the circular cylindrical system of coordinates where the mechanical characteristics of its inhomogeneous materials serve as the functions of the only variable. The task is solved via direct integration of the entire system of equations of the theory of elasticity within the selected system of coordinates upon the condition of rigid contact at the interfaces of the layers. The analytical relations for all the components of the features of the stress-strain state are obtained, their application is illustrated by the results of the solution to the test task of compression of the four-layered beam with the isotropic core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M. Ei-Mikawi and A. S. Mosallam, “A methodology for evaluation of the use of advanced composites in structural civil engineering applications,” Compos. Part B-Eng., 27, Nos. 3–4, 203–215 (1996).

    Article  Google Scholar 

  2. L. I. Storozhenko, P. I. Plakhotnyi, and A. Ya. Chernyi, Calculation of Tube Confined Concrete Structures [in Russian], Budivelnyk, Kiev (1991).

  3. J. Zheng and T. Ozbakkaloglu, “Sustainable FRP-recycled aggregate concretesteel composite columns: Behavior of circular and square columns under axial compression,” Thin Wall. Struct., 120, 60–69 (2017).

    Article  Google Scholar 

  4. Y. Xiao, “Applications of FRP composites in concrete columns,” Adv. Struct. Eng., 7, No. 4, 335–343 (2004).

    Article  Google Scholar 

  5. A. Mirmiran and M. Shahawy, “A new concrete-filled hollow FRP composite column,” Compos. Part B-Eng., 27, Nos. 3–4, 263–268 (1996).

    Article  Google Scholar 

  6. V. A. Romashchenko, “A numerical study of the nonlinear dynamics of multilayer spirally orthotropic cylinders,” Strength Mater., 40, No. 6, 678–687 (2008).

    Article  Google Scholar 

  7. P. P. Lepikhin, V. A. Romashchenko, and O. S. Beiner, “A numerical study of 3D dynamics and strength of metal-composite cylinders under internal explosion loading,” Strength Mater., 49, No. 6, 796–808 (2017).

    Article  Google Scholar 

  8. S. Matthys, H. Toutanji, K. Audenaert, and L. Taerwe, “Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites,” ACI Struct. J., 102, No. 2, 258–267 (2005).

    Google Scholar 

  9. L. Lam and J. G. Teng, “Strength models for fiber-reinforced plastic-confined concrete,” J. Struct. Eng., 128, No. 5, 612–623 (2002).

    Article  Google Scholar 

  10. T. H. Almusallam, “Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates,” Compos. Part B-Eng., 38, Nos. 5–6, 629 – 639 (2007).

    Article  Google Scholar 

  11. V. V. Vasil’ev, Mechanics of Structures Made of Composite Materials [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  12. N. I. Muskhelishvili, “To the task of torsion and bending of elastic bars made of various materials,” Izv. AN SSSR. VII Ser. Otd. Matem. Estestv. Nauk, No. 7, 907–945 (1932).

  13. N. I. Muskhelishvili, Some Basic Tasks of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  14. E. Soós, “Sur le problème de Saint-Venant dans le cas des barres hétérogènes avec anisotropie cylindrique,” B. Math. Soc. Sci. Math., 7 (55), 6–75 (1963).

    Google Scholar 

  15. S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Body [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  16. V. V. Vasil’ev (Ed.), Yu. M. Tarnopol’skii (Ed.), V. D. Protasov, et al., Composite Materials [in Russian], Mashinostroenie, Moscow (1990).

  17. L. É. Él’sgol’ts, Differential Equations and the Calculus of Variations [in Russian], Nauka, Moscow (1969)

    Google Scholar 

  18. W. Voigt, “Über die elasticitätsverhältnisse cylindrisch aufgebauter Körper,” Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, No. 16, 505–514 (1886).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Koval’chuk.

Additional information

Translated from Problemy Prochnosti, No. 2, pp. 83 – 96, March – April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval’chuk, S.B., Gorik, A.V., Pavlikov, A.N. et al. Solution to the Task of Elastic Axial Compression–Tension of the Composite Multilayered Cylindrical Beam. Strength Mater 51, 240–251 (2019). https://doi.org/10.1007/s11223-019-00070-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-019-00070-z

Keywords

Navigation