Skip to main content
Log in

Effect of the Surface Texture on Laser Joining of a Carbon Fiber-Reinforced Thermosetting Plastic and Stainless Steel

  • Published:
Strength of Materials Aims and scope

A carbon fiber-reinforced thermosetting plastic and stainless steel were joined by the fiber laser. The surface texture effect on the joint was investigated. The abrasive paper scratching is shown to form single directional striae on stainless steel with intermittent ridges. Laser texture processing creates uniformly distributed microdimples and ridges, which forms a rectangular cellular structure. This processing can improve the fluidity of molten polyphenylene sulfite during laser joining. Laser scanning on stainless steel results in the formation of fusion and heat-affected zones. In the heat-affected zone, lathy ferrite is located along the boundary, while in the fusion zone, ferrite forms the skeletal structure and separates austenite into a cellular structure. The surface texture modification can contribute to the adhesive strength between stainless steel and polyphenylene sulfite through on enlarged contact surface area by forming striae, microdimples, and ridges. As compared to the abrasive paper scratching, the stainless steel/plastic joint with laser texture processing exhibits a higher shear strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. X. L. Zhao and L. Zhang, “State-of-the-art review on FRP strengthened steel structures,” Eng. Struct., 29, No. 8, 1808–1823 (2007).

    Article  Google Scholar 

  2. G. Williams, R. Trask, and I. Bond, “A self-healing carbon fiber reinforced polymer for aerospace applications,” Compos. Part A-Appl. S., 38, No. 6, 1525–1532 (2007).

    Article  Google Scholar 

  3. A. Mayyas, A. Qattawi, M. Omar, and D. Shan, “Design for sustainability in automotive industry: a comprehensive review,” Renew. Sust. Energ. Rev., 16, No. 4, 1845–1862 (2012).

    Article  Google Scholar 

  4. Z. Zhang, J. Shan, X. Tan, and J. Zhang, “Improvement of the laser joining of CFRP and aluminum via laser pre-treatment,” Int. J. Adv. Manuf. Tech., 90, Nos. 9–12, 3465–3472 (2017).

    Article  Google Scholar 

  5. F. Lambiase and D.-C. Ko, “Two-steps clinching of aluminum and Carbon Fiber Reinforced Polymer sheets,” Compos. Struct., 164, 180–188 (2017).

    Article  Google Scholar 

  6. G. Marannano and B. Zuccarello, “Numerical experimental analysis of hybrid double lap aluminum-CFRP joints,” Compos. Part B-Eng., 71, 28–39 (2015).

    Article  Google Scholar 

  7. P. Molitor, V. Barron, and T. Young, “Surface treatment of titanium for adhesive bonding to polymer composites: a review,” Int. J. Adhes. Adhes., 21, No. 2, 129–136 (2001).

    Article  Google Scholar 

  8. S. M. Goushegir, “Friction spot joining (FSpJ) of aluminum-CFRP hybrid structures,” Weld. World, 60, No. 6, 1073–1093 (2016).

    Article  Google Scholar 

  9. S. Katayama and Y. Kawahito, “Laser direct joining of metal and plastic,” Scripta Mater., 59, No. 12, 1247–1250 (2008).

    Article  Google Scholar 

  10. X. Tan, J. Shan, J. Ren, “Effects of Cr plating layer on shear strength and interface bonding characteristics of mild steel/CFRP joint by laser heating,” Acta Metall. Sin., 49, 751–756 (2013).

    Article  Google Scholar 

  11. A. Roesner, A. Olowinsky, and A. Gillner, “Long term stability of laser joined plastic metal parts,” Phys. Procedia, 41, 169–171 (2013).

    Article  Google Scholar 

  12. J. Jiao, Z. Xu, Q. Wang, et al., “CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization,” Opt. Laser Technol., 103, 170–176 (2018).

    Article  Google Scholar 

  13. M. Mukherjee, T. K. Pal, “Evaluation of microstructural and mechanical properties of Fe-16Cr-1Ni-9Mn-0.12N austenitic stainless steel welded joints,” Mater. Charact., 131, 406–424 (2017).

    Article  Google Scholar 

  14. L. J. Wang, L. Y. Sheng, and C. M. Hong, “Influence of grain boundary carbides on mechanical properties of high nitrogen austenitic stainless steel,” Mater. Design, 37, 349–355 (2012).

    Article  Google Scholar 

  15. L. Y. Sheng, F. Yang, T. F. Xi, et al., “Microstructure and elevated temperature tensile behaviour of directionally solidified nickel based superalloy,” Mater. Res. Innov., 17, No. S1, 101–106 (2013).

    Article  Google Scholar 

  16. L. Y. Sheng, F. Yang, T. F. Xi, et al., “Microstructure evolution and mechanical properties of Ni3Al/Al2O6 composite during self-propagation high-temperature synthesis and hot extrusion,” Mater. Sci. Eng. A, 555, 131–138 (2012).

    Article  Google Scholar 

  17. L. Y. Sheng, B. N. Du, B. J. Wang, et al., “Hot extrusion effect on the microstructure and mechanical properties of a Mg–Y–Nd–Zr alloy,” Strength Mater., 50, No. 1, 184–192 (2018).

    Article  Google Scholar 

  18. L. Y. Sheng, F. Yang, T. F. Xi, et al., “Microstructure and room temperature mechanical properties of NiAl–Cr(Mo)–(Hf, Dy) hypoeutectic alloy prepared by injection casting,” Trans. Nonferr. Met. Soc. China, 23, No. 4, 983–990 (2013).

    Article  Google Scholar 

  19. K. Nagatsuka, S. Yoshida, A. Tsuchiy, and K. Nakata, “Direct joining of carbon- fiber–reinforced plastic to an aluminum alloy using friction lap joining,” Compos. Part B-Eng., 73, 82–88 (2015).

    Article  Google Scholar 

  20. L. Y. Sheng, F. Yang, T. F. Xi, et al., “Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling,” Compos. Part B-Eng., 42, No. 6, 1468–1473 (2011).

    Article  Google Scholar 

  21. A. Pramanik, A. K. Basak, Y. Dong, et al., “Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review,” Compos. Part A-Appl. S., 101, 1–29 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support of Shenzhen Basic Research Project (JCYJ20150529162228734, JCYJ20170815153143221, JCYJ20150625155931806, JCYJ20160427100211076 and JCYJ20160427170611414, JCYJ20170306141506805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Y. Sheng.

Additional information

Translated from Problemy Prochnosti, No. 1, pp. 137 – 145, January – February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, L.Y., Lai, C., Xu, Z.F. et al. Effect of the Surface Texture on Laser Joining of a Carbon Fiber-Reinforced Thermosetting Plastic and Stainless Steel. Strength Mater 51, 122–129 (2019). https://doi.org/10.1007/s11223-019-00057-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-019-00057-w

Keywords

Navigation