Skip to main content
Log in

Deformation and Vibration-Induced Stress Intensity of a High-Temperature Turbine Rotor with a Breathing Transverse Crack

  • Published:
Strength of Materials Aims and scope

The vibrations of a double-seat weighty rotor of the steam turbine with a breathing transverse crack are examined in the field of operating environment temperatures. The 3D vibration model for the rotor with a breathing transverse crack is applied. The variable two-dimensional temperature field is found from the solution of nonstationary heat transfer problem. Its effect on the contact of crack edges on rotor vibrations was evaluated. The distribution of stress intensity factors along the crack front was established for different rotor positions. Fatigue crack extension modes are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. A. S. Goldin, “Thermal unbalance of the rotor,” Sborka Mashinostr. Priborostr., No. 4 (105), 52–56 (2009).

  2. V. V. Matveev, A. P. Yakovlev, O. E. Boginich, and E. A. Sinenko, “Approximate analytical determination of vibrodiagnostic parameters of the presence of a closing crack in bar elements under subharmonic resonance,” Strength Mater., 46, No. 3, 315–327 (2014).

    Article  Google Scholar 

  3. A. S. Sekhar, A. R. Mohanty, and S. Prabhakar, “Vibrations of cracked rotor system: transverse crack versus slant crack,” J. Sound Vib., 279, 1203–1217 (2005).

    Article  Google Scholar 

  4. A. R. Dimarogonas, “Vibration of cracked structures: a state of art review,” Eng. Fract. Mech., 55, 831–857 (1996).

    Article  Google Scholar 

  5. A. K. Darpe, K. Gupta, and A. Chawta, “Coupled bending, longitudinal and torsional vibrations of a cracked rotor,” J. Sound Vib., 269, 33–60 (2004).

    Article  Google Scholar 

  6. E. A. Sinenko and A. P. Zinkovskii, “Influence of the exciting force application point on the amplitude spectrum of flexural vibrations in a beam with a “breathing” crack,” Strength Mater., 47, No. 4, 553–560 (2015).

    Article  Google Scholar 

  7. V. V. Matveev and E. A. Onishchenko, “Vibrodiagnostic parameters of the presence of a semielliptic breathing crack in circular bars under super- and subharmonic resonances,” Strength Mater., 48, No. 2, 195–207 (2016).

    Article  Google Scholar 

  8. P. Pennacchi, N. Bachschmid, and A. Vania, “A model-based identification method of transverse cracks in rotating shafts suitable for industrial machines,” Mech. Syst. Signal Pr., 20, 2112–2147 (2000).

    Article  Google Scholar 

  9. M. I. Friswell, “Damage identification using inverse methods,” Philos. T. R. Soc. A, 365, 393–410 (2007).

    Article  Google Scholar 

  10. G. Sabnavis, R. G. Kirk, M. Kasarda, and D. D. Quinn, “Cracked shaft detection and diagnostics: a literature review,” Shock Vib. Digest, 36, 287–296 (2004).

    Article  Google Scholar 

  11. R. Gasch, “Dynamic behaviour of the Laval rotor with a transverse crack,” Mech. Syst. Signal Pr., 22, 790–804 (2008).

    Article  Google Scholar 

  12. N. Bachschmid, P. Pennacchi, E. Tanzi, and S. Audebert, “Transverse crack modeling and validation in rotor systems, including effects,” Int. J. Rot. Mach., 9, No. 2, 113–126 (2003).

    Article  Google Scholar 

  13. N. Bachschmid and E. Tanzi, “Vibration pattern related to transverse crack in rotors,” Shock Vib., 9, Nos. 4–5, 217–224 (2002).

    Article  Google Scholar 

  14. P. Popaleny and N. Peton, “Steam turbine rotor crack,” in: Proc. of the Int. Conf. SURVEILLANCE 7 (Oct. 29–30, 2013, Chartres, France), Institute of Technology of Chartres (2013).

  15. P. Pennacchi and A. Vania, “Shaft crack detection in a steam turbine: experimental evidences and model-based simulations,” in: Proc. of ISMA 2010 including USD 2010 (Sept. 20–22, 2010, Leuven, Belgium), pp. 1055–1070.

  16. N. Bachschmid, P. Pennacchi, and E. Tanzi, “Analysis of the thermal effects in rotor shaft affected by transverse crack,” in: Bollettino del C.I.L.Å.A., Research Activities on High Performance Computing Clusters at CILEA (2006), pp. 11–25.

  17. N. G. Shul’zhenko, B. F. Zaitsev, E. K. Rudenko, and A. V. Asaenok, “Evaluation of the effect of temperature stresses on the vibrations of a rotor with a transverse crack considering edge contacts,” Visn. Zaporozh. Nats. Univ., No. 1, 218–226 (2015).

  18. N. G. Shul’zhenko, B. F. Zaitsev, A. V. Asaenok, and T. V. Protasova, “Effect of the temperature field on the resonant vibrations of a rotor with a breathing transverse crack,” Vibr. Tekh. Tekhnol., No. 3 (83), 75–82 (2016).

  19. N. G. Shul’zhenko, B. F. Zaitsev, N. E. Vikman, and A. V. Asaenok, “Vibration analysis of rotor with a “breathing” crack using three-dimensional model,” Strength Mater., 44, No. 6, 678–685 (2012).

    Article  Google Scholar 

  20. A. V. Asaenok, B. F. Zaitsev, and N. G. Shul’zhenko, “Procedure for introducing virtual cuts to the FEM scheme in the problems of statics and natural vibrations of three-dimensional constructions,” Probl. Mashinostr., 6, No. 3, 58–63 (2003).

    Google Scholar 

  21. B. F. Zaitsev, N. G. Shul’zhenko, A. V. Asaenok, and N. E. Eretskaya, “Method of calculating the vibrations of bodies containing cracks with contacting edges,” Probl. Mashinostr., 11, No. 4, 34–42 (2008).

    Google Scholar 

  22. N. G. Shul’zhenko, P. P. Gontarovskii, and B. F. Zaitsev, Problems of Thermal Strengths, Vibration Diagnostics, and Life of Power Units (Models, Methods, and Research Results), LAP Lambert Academic Publishing GmbH& Co.KG., Saarbrücken (2011).

    Google Scholar 

  23. A. I. Lur’e, Theory of Elasticity [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  24. B. F. Zaitsev, A. V. Asaenok, and N. E. Vikman, “Construction of mass matrices considering centrifugal forces on the vibrations of a three-dimensional rotating body,” Vestn. NTU “KhPI.” Dinam. Prochn. Mashin, Issue 30, 52–56 (2009).

  25. K. Bathe and E. Wilson, Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ (1976).

    Google Scholar 

  26. RTM 108.020.16-83. Calculation of the Temperature Fields of Rotors and Steam Turbine Casings [in Russian], NPO TsKTI, Leningrad (1985).

  27. A. F. Émeri and V. V. Karson, “Evaluation of FEM applicability to temperature calculations,” Teploperedacha, No. 2, 6–17 (1971).

  28. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  29. E. M. Morozov and G. P. Nikishkov, Finite Element Method in Fracture Mechanics [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  30. V. P. Kogaev, N. A. Makhutov, and A. P. Gusenkov, Strength and Lifetime Calculations for Machine and Structure Elements [in Russian], Mashinostroenie, Moscow (1985).

    Google Scholar 

  31. V. T. Troshchenko and L. A. Sosnovskii, Fatigue Resistance of Metals and Alloys [in Russian], Handbook in 2 parts, Naukova Dumka, Kiev (1987).

  32. V. T. Troshchenko, V. V. Pokrovskii, and A. V. Prokopenko, Crack Resistance of Metals under Cyclic Loading [in Russian], Naukova Dumka, Kiev (1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Shul’zhenko.

Additional information

Translated from Problemy Prochnosti, No. 6, pp. 21 – 30, November – December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shul’zhenko, N.G., Zaitsev, B.F., Asaenok, A.V. et al. Deformation and Vibration-Induced Stress Intensity of a High-Temperature Turbine Rotor with a Breathing Transverse Crack. Strength Mater 49, 751–759 (2017). https://doi.org/10.1007/s11223-018-9920-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-018-9920-x

Keywords

Navigation