Skip to main content
Log in

Fem-Based Thermal Analysis of Underground Power Cables Located in Backfills Made of Different Materials

  • Published:
Strength of Materials Aims and scope

Abstract

This paper presents the preliminary thermal analysis of the underground transmission line, which will be applied in the Polish power plant that produces 600 MW of power. The paper considers a system of three power cables located in the in-line arrangement placed in the HDPE casing pipes buried in the multilayered soil (the native soil and the thermal backfill). Different configurations of bedding layers are analyzed. The burial depth of the cables, measured from the reference level (0.5 m below the ground) varies from 2 to 6 m. What influences the temperature distribution in soil, cable bedding and cable conductor. The numerical computations of the steady-state temperature fields are performed using the finite element method. Additionally, to include the dry-zone formation effect on the temperature distribution, the soil thermal conductivity is considered to be temperature-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. IEC Standard 60287-2-1: Electric Cables – Calculation of the Current Rating – Part 2: Thermal Resistance– Section 1: Calculation of the Thermal Resistance (1995).

  2. 8351994: IEEE Standard Power Cable Ampacity Tables (1994).

  3. E. Kroener, A. Vallati, and M. Bittelli, “Numerical simulation of coupled heat, liquid water and water vapor in soils for heat dissipation of underground electrical power cables,” Appl. Therm. Eng., 70, 510–523 (2014).

    Article  Google Scholar 

  4. C. D. Peters-Lidard, E. Blackburn, X. Liang, and E. F. Wood, “The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures,” J. Atmosph. Sci., 55, 1209–1224 (1998).

    Article  Google Scholar 

  5. S. W. Rees, M. H. Adjali, Z. Zhou, et al., “Ground heat transfer effects on the thermal performance of earth-contact structures,” Renewable & Sustainable Energy Rev., 4, 213–265 (2000).

    Article  Google Scholar 

  6. O. E. Gouda, A. Z. El Dein, and M. G. Amer, “Effect of the formation of the dry zone around underground power cables on their rating,” IEEE Trans. Power Delivery, 26, 972–978 (2011).

    Article  Google Scholar 

  7. C. C. Hwang and Y. H. Jiang, “Extensions to the finite element method for thermal analysis of underground cable systems,” Electr. Power Syst. Res., 64, 159–164 (2003).

    Article  Google Scholar 

  8. M. S. Al-Saud, M. A. El-Kady, and R. D. Findlay, “A new approach to underground cable performance assessment,” Electr. Power Syst. Res., 78, 907–918 (2008).

    Article  Google Scholar 

  9. V. R. De Lieto, L. Fontana, and A. Vallati, “Thermal analysis of underground electrical power cables buried in non-homogeneous soils,” Appl. Thermal Eng., 31, 772–778 (2011).

    Article  Google Scholar 

  10. V. R. De Lieto, L. Fontana, and A. Vallati, “Experimental study of the thermal field deriving from an underground electrical power cable buried in non-homogeneous soils,” Appl. Thermal Eng., 62, 390–397 (2014).

    Article  Google Scholar 

  11. I. Papagiannopoulos, V. Chatziathanasiou, L. Exizidis, et al., “Behaviour of the thermal impedance of buried power cables,” Electr. Power Energy Syst., 44, 383–387 (2013).

    Article  Google Scholar 

  12. V. Chatziathanasiou, P. Chatzipanagiotou, I. Papagiannopoulos, et al., “Dynamic thermal analysis of underground medium power cables using thermal impedance, time constant distribution and structure function,” Appl. Thermal Eng., 60, 256–260 (2013).

    Article  Google Scholar 

  13. B. Wiæcek, G. De Mey, V. Chatziathanasiou, et al., “Harmonic analysis of dynamic thermal problems in high voltage overhead transmission lines and buried cables,” Electr. Power Energy Syst., 58, 199–205 (2014).

    Article  Google Scholar 

  14. J. Taler and P. Ocùoñ, “Finite element method in steady-state and transient heat conduction,” in: R. B. Hetnarski (Ed.), Encyclopedia of Thermal Stresses, Vol. 4, Springer, Dordrecht–Heidelberg–New York–London (2014), pp. 1604–1633.

  15. K. E. Saleeby, W. Z. Black, and J. G. Hartley, “Effective thermal resistivity for power cables buried in thermal backfill,” IEEE Trans. Power Apparat. Syst., 98, 2201–2214 (1979).

    Article  Google Scholar 

  16. Specification No. CS7001-17 for Construction of Underground Facilities, Hawaiian Electric Co., Inc. (2006).

  17. H. S. Radhakrishna, “Fluidized cable thermal backfill,” in: Proc. of the Symp. on Underground Cable Thermal Backfill (Sept., 1981, Toronto, Canada) (1981), pp. 34–53.

  18. B. Dùugosz, “Kablowe przepusty rurowe wypelnione wyplukiwalna substancja mineralna,” Energetyka, 38, 334 (1989).

    Google Scholar 

  19. Materials of Nexans Company: 60–500 kV High Voltage Underground Power Cables. XLPE Insulated Cables, Paris (2004), pp. 12, 31–33.

  20. Yong-ming Tien, Chen-An Chu, Po-Lin Wu, et al., “Improved measurement and a predictive model for thermal conductivity of sand-bentonite mixtures,” J. GeoEng., 5, 51–60 (2010).

  21. MathWorks Inc., MATLAB R2011b (2011).

  22. B. A. Fricke, Soil Thermal Conductivity: Effects of Saturation and Dry Density, Ph.D. Thesis, University of Missouri–Kansas City (1992).

  23. C. O. Popiel, J. Wojtkowiak, and B. Biernacka, “Measurements of temperature distribution in ground,” Exper. Thermal Fluid Sci., 25, 301–309 (2001).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the ENERGOPROJEKT-KRAKOW SA company for a creative support and helpful advices in writing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ocùoñ.

Additional information

Translated from Problemy Prochnosti, No. 5, pp. 143 – 155, September – October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocùoñ, P., Taler, D., Cisek, P. et al. Fem-Based Thermal Analysis of Underground Power Cables Located in Backfills Made of Different Materials. Strength Mater 47, 770–780 (2015). https://doi.org/10.1007/s11223-015-9713-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-015-9713-4

Keywords

Navigation