Skip to main content
Log in

Relationship Between the Threshold Stress Intensity Factor Ranges of the Material and the Transition From Short to Long Fatigue Crack

  • Published:
Strength of Materials Aims and scope

A relationship between the threshold stress intensity factor ranges of the material is established for microstructurally short, physically small and long fatigue cracks depending on the microstructure at a symmetrical loading cycle. The threshold stress intensity factor ranges calculated by the proposed concept for titanium alloy VT3-1 in different structural states agree well with those determined experimentally. The criteria are proposed for the transition from a small to a long fatigue crack depending on the level of the applied load amplitude. In the whole range of the load amplitudes, the condition when a reversible plastic zone at the crack tip reaches the grain size is taken as a criterion for the transition from a physically small to a long fatigue crack. In the high cycle fatigue region, the physically small crack growth range is to be divided into two areas because of a change in the mechanisms of the physically small crack growth upon the attainment by the stress intensity factor range of the threshold value for the long crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a, c, h :

hexagonal close packed (HCP) crystal lattice parameters

b :

Burgers vector (\( \overrightarrow{b} \)) magnitude

d :

linear dimension of the structural element responsible for the fatigue strength of the given material (grain size, maximum dept of the microstructurally short crack (MSC), minimum depth of the physically small crack (PSC)

E :

modulus of elasticity

ΔK :

stress intensity factor (SIF) range

K max :

maximum SIF of the cycle

ΔK th,d :

threshold SIF range for a MSC

ΔK th,l :

threshold SIF range for a PSC

ΔK th :

threshold stress intensity factor range for a long crack (LC)

ΔK th,in :

intrinsic threshold SIF range

ΔK th,eff :

effective threshold SIF range for a LC

ΔK T :

SIF range corresponding to the transition from a PSC and a LC

l :

semicircular surface crack depth

l s :

transitional PSC depth corresponding to the fatigue limit σ-1

l i :

transitional PSC depth at σ-1 < σ a σp

l ' i :

final PSC depth (initial LC depth)

M :

Taylor factor (M = 1/m)

m :

Schmid factor (m = cos φcos γ)

φ:

angle between the normal to the slip plane and load σ a direction γ angle between the slip direction and load σ a direction

μ:

Poisson’s ratio

R :

cycle stress ratio

r p,c :

reversible plastic zone size

σ a :

stress amplitude of load cycle

σ max :

maximum stress of load cycle

σ1 :

fatigue limit at symmetric loading cycle

σ p :

proportionality limit

σ f :

internal friction stress in the crystal lattice

U :

crack opening factor

Y 1, Y 2 :

geometrical factors (shape functions)

Y 1 k d :

plastic zone effect factor

Y 2 k d :

crack closure factor

References

  1. V. V. Panasyuk (Ed.), Fracture Mechanics and Strength of Materials [in Russian], Handbook in 4 volumes, Vol. 4: O. N. Romaniv, S. Ya. Yarema, G. N. Nykyforchyn, et al., Fatigue and Cyclic Fracture Toughness of Structural Materials, Naukova Dumka, Kiev (1990).

    Google Scholar 

  2. Standard Test Method for Measurements of Fatigue Crack Growth Rates, ASTM STP E647-00 (2000).

  3. Y. Akiniwa and K. Tanaka, “Statistical characteristics of propagation of small fatigue cracks in smooth specimens of aluminium alloy 2024-T3,” Mater. Sci. Eng. A, 104, 105–115 (1988).

    Article  Google Scholar 

  4. Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standard BS 7910 (2005).

  5. K. Tanaka, “Fatigue crack propagation,” Comp. Struct. Integr., 4, 95–127 (2003).

    Article  Google Scholar 

  6. D. Davidson, K. Chan, R.McClung, and S. Hudak, ”Small fatigue cracks,” Comp. Struct. Integr., 4, 129–164 (2003).

    Article  Google Scholar 

  7. K. J. Miller, “The behavior of short fatigue cracks and their initiation. Pt. II. General summary,” Fatigue Fract. Eng. Mater. Struct., 10, 93–113 (1987).

    Article  Google Scholar 

  8. K. Tanaka and Y. Akiniwa, “Modeling of fatigue crack growth: mechanistic models,” Comp. Struct. Integr., 4, 165–189 (2003).

    Article  Google Scholar 

  9. C. Santus and D. Taylor, “Physically short crack propagation in metals during high cycle fatigue,” Int. J. Fatigue, 31, 1356–1365 (2009).

    Article  Google Scholar 

  10. O. M. Herasymchuk, “A generalized grain-size dependence of the fatigue limit,” Strength Mater., 43, No. 2, 205–216 (2011).

    Article  Google Scholar 

  11. R. W. Hertzberg, “A simple calculation of data in the near-threshold regime and above,” Int. J. Fract., 64, R53–R58 (1993).

    Article  Google Scholar 

  12. K. S. Chan,“Variability of large-crack fatigue-crack-growth thresholds in structural alloys,” Met. Mater. Trans. A, 35A, 3721–3735 (2004).

    Article  Google Scholar 

  13. Y. Murakami “Analysis of stress intensity factors of modes I, II, and III for inclined surface cracks of arbitrary shape,” Eng. Fract. Mech., 22, No. 1, 101–114 (1985).

    Article  Google Scholar 

  14. A. J. McEvily, M. Endo, and Y. Murakami, “On the relationship and the short fatigue threshold,” Fatigue Fract. Eng. Mater. Struct., 26, 269–278 (2003).

    Article  Google Scholar 

  15. Y. Murakami, “High and ultrahigh cycle fatigue,” Comp. Struct. Integr., 4, 41–76 (2003).

    Article  Google Scholar 

  16. V. T. Troshchenko, B. À. Gryaznov, Yu. S. Nalimov, et al., “Fatigue strength and cyclic crack resistance of titanium alloy VT3-1 in different structural states. Communication 1. Study procedure and experimental results,” Strength Mater., 27, No. 5-6, 3–11 (1995).

    Google Scholar 

  17. O. M. Herasymchuk, “Nonlinear relationship between the fatigue limit and quantitative parameters of material microstructure,” Int. J. Fatigue, 33, 649–659 (2011).

    Article  Google Scholar 

  18. O. M. Herasymchuk and O. V. Kononuchenko, “Model for fatigue life prediction of titanium alloys. Part 2. Model testing and analysis of obtained results,” Strength Mater., 45, No. 2, 163–170 (2013).

    Article  Google Scholar 

  19. O. M. Herasymchuk, Yu. S. Nalimov, P. E. Markovs’kyi, et al., “Effect of the microstructure of titanium alloys on the fatigue strength characteristics,” Strength Mater., 43, No. 3, 282–293 (2011).

    Article  Google Scholar 

  20. R. K. Nalla, B. L. Boyce, J. P. Campbell, et al., “Influence of microstructure on high-cycle fatigue of Ti–6Al–V: bimodal vs lamellar structures,” Met. Mater. Trans. A, 33A, 899–918 (2002).

    Article  Google Scholar 

  21. G. Lütjering and J. C. Williams, Titanium, Springer, New York (2003).

    Google Scholar 

  22. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd edition, Wiley, New York (1982).

    Google Scholar 

  23. J. Schijve, Fatigue of Structures and Materials, Springer, New York (2009).

    Book  Google Scholar 

  24. O. M. Herasymchuk and O. V. Kononuchenko, “Model for fatigue life prediction of titanium alloys. Part 1. Elaboration of a model of fatigue life prior to initiation of microstructurally short crack and a propagation model for physically short and long cracks,” Strength Mater., 45, No. 1, 44–55 (2013).

    Article  Google Scholar 

  25. H. Kitagawa and S. Takahashi, “Applicability of fracture mechanics to very small cracks or the cracks in the early stage,” in: Proc. of the Second Int. Conf. on Mechanical Behavior of Materials, ASM, Metals Park, OH (1976), pp. 627–631.

  26. M. M. El Haddad, K. N. Smith, and T. U. Topper, “Fatigue crack propagation of short cracks,” J. Eng. Mater. Technol., 101, No. 1, 42–46 (1979).

    Article  Google Scholar 

  27. V. T. Troshchenkî and L. À. Khamaza, “Conditions for the transition from nonlocalized to localized damage in metals and alloys. Part 1. Crack sizes at fatigue limit,” Strength Mater., 46, No. 3, 303–314 (2014).

    Google Scholar 

  28. J. P. Lukas and W. W. Gerberich, “A proposed criterion for fatigue threshold: dislocation substructure approach,” Fatigue Fract. Eng. Mater. Struct., 6, 271–280 (1983).

    Article  Google Scholar 

  29. Yu. G. Matvienko, Models and Criteria of Fracture Mechanics [in Russian], Fizmatlit, Moscow (2006).

    Google Scholar 

  30. G. R. Yoder, L. A. Cooley, and T. W. Crooker, “Quantitative analysis of microstructural effects on fatigue crack growth in widmanstatten Ti–6Al–4 V and Ti–8Al–1Mo–1 V,” Eng. Fract. Mech., 11, 805–816 (1979).

    Article  Google Scholar 

  31. G. R. Yoder, L. A. Cooley, and T. W. Crooker, “On microstructural control of near-threshold fatigue crack growth in 7000-series aluminum alloys,” Scr. Met., 16, 1021–1025 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 3, pp. 77 – 95, May – June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herasymchuk, O.M. Relationship Between the Threshold Stress Intensity Factor Ranges of the Material and the Transition From Short to Long Fatigue Crack. Strength Mater 46, 360–374 (2014). https://doi.org/10.1007/s11223-014-9558-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-014-9558-2

Keywords

Navigation