Skip to main content
Log in

A focused information criterion for graphical models

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

A new method for model selection for Gaussian Bayesian networks and Markov networks, with extensions towards ancestral graphs, is constructed to have good mean squared error properties. The method is based on the focused information criterion, and offers the possibility of fitting individual-tailored models. The focus of the research, that is, the purpose of the model, directs the selection. It is shown that using the focused information criterion leads to a graph with small mean squared error. The low mean squared error ensures accurate estimation using a graphical model; here estimation rather than explanation is the main objective. Two situations that commonly occur in practice are treated: a data-driven estimation of a graphical model and the improvement of an already pre-specified feasible model. The search algorithms are illustrated by means of data examples and are compared with existing methods in a simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abreu, G., Labouriau, R., Edwards, D.: High-dimensional graphical model search with the gRapHD R package. J. Stat. Softw. 37(1), 1–18 (2010)

    Article  Google Scholar 

  • Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B., Csáki, F. (eds.) Second International Symposium on Information Theory, pp. 267–281. Akadémiai Kiadó, Budapest (1973)

    Google Scholar 

  • Ali, R.A., Richardson, T., Spirtes, P.: Markov equivalence for ancestral graphs. Ann. Stat. 37(5B), 2808–2837 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Banerjee, O., El Ghaoui, L., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9, 485–516 (2008)

    MATH  MathSciNet  Google Scholar 

  • Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory 14, 462–467 (1968)

    Article  MATH  Google Scholar 

  • Claeskens, G., Hjort, N.: The focused information criterion. J. Am. Stat. Assoc. 98, 900–916 (2003). With discussion and a rejoinder by the authors

  • Claeskens, G., Hjort, N.: Minimising average risk in regression models. Econom. Theory 24, 493–527 (2008a)

    Article  MATH  MathSciNet  Google Scholar 

  • Claeskens, G., Hjort, N.: Model Selection and Model Averaging. Cambridge University Press, Cambridge (2008b)

    Book  MATH  Google Scholar 

  • Cox, D.R., Wermuth, N.: Multivariate Dependencies: Models Analysis and Interpretation. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  • Dempster, A.: Covariance selection. Biometrics 28(1), 157–175 (1972)

    Article  Google Scholar 

  • Dor, D., Tarsi, M.: A simple algorithm to construct a consistent extension of a partially oriented graph. Tech. Rep. (1992).

  • Drton, M., Perlman, M.: Model selection for Gaussian concentration graphs. Biometrika 91(3), 591–602 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Drton, M., Perlman, M.: A SINful approach to Gaussian graphical model selection. J. Stat. Plann. Inference 138(4), 1179–1200 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Drton, M., Richardson, T.: Iterative conditional fitting for Gaussian ancestral graph models. In: Chickering D, Halpern J (eds) Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pp. 130–137 (2004).

  • Edwards, D.: Introduction to Graphical Modelling, 2nd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  MATH  Google Scholar 

  • Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    Article  MATH  Google Scholar 

  • Gammelgaard Bøttcher, S.: Learning Bayesian Networks with Mixed Variables. PhD thesis, Aalborg University (2004).

  • Grossman, D., Domingos, P.: Learning Bayesian network classifiers by maximizing conditional likelihood. In: Brodley C (ed) Proceedings of the 21st International Conference on Machine Learning (2004).

  • Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer Series in Statistics, Springer, New York, (2009)

  • Heckerman, D., Geiger, D.: Learning Bayesian networks: A unification for discrete and Gaussian domains. In: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, pp. 274–284 (1995).

  • Hjort, N., Claeskens, G., Hjort, N.: Frequentist model average estimators. J. Am. Stat. Assoc. 98, 879–899 (2003). With discussion and a rejoinder by the authors

  • Hjort, N., Claeskens, G.: Focussed information criteria and model averaging for Cox’s hazard regression model. J. Am. Stat. Assoc. 101, 1449–1464 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Hjort, N.L.: The exact amount of t-ness that the normal model can tolerate. J. Am. Stat. Assoc. 89, 665–675 (1994)

    MATH  MathSciNet  Google Scholar 

  • Jardine, N., van Rijsbergen, C.: The use of hierarchic clustering in information retrieval. Inf. Storage Retr. 7(5), 217–240 (1971)

    Article  Google Scholar 

  • Kalisch, M., Mächler, M., Colombo, D., Maathuis, M., Bühlmann, P.: Causal inference using graphical models with the R package pcalg. J. Stat. Softw. 47(11), 1–26 (2012)

    Article  Google Scholar 

  • Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  • Krishnamurthy, V., Ahipaşaoğlu, S., d’Aspremont, A.: A pathwise algorithm for covariance selection. In: Sra, S., Nowozin, S., Wright, S. (eds.) Optimization for Machine Learning, pp. 479–494. MIT Press, Cambridge (2012)

    Google Scholar 

  • Lauritzen, S.: Graphical Models. Oxford University Press, New York (1996)

    Google Scholar 

  • Li, L., Toh, K.C.: An inexact interior point method for \(l_1\)-regularized sparse covariance selection. Math. Progr. Comput. 2(3–4), 291–315 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Mansour, J., Schwarz, R.: Molecular mechanisms for individualized cancer care. J. Am. Coll. Surg. 207(2), 250–258 (2008)

    Article  Google Scholar 

  • Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, London (1979)

  • Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Ann. Stat. 34(3), 1436–1462 (2006)

    Article  MATH  Google Scholar 

  • Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc, San Francisco (1988)

    Google Scholar 

  • Richardson, T., Spirtes, P.: Ancestral graph Markov models. Ann. Stat. 30(4), 962–1030 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Schmidt, M., Niculescu-Mizil, A., Murphy, K.: Learning graphical model structure using \(l_1\)-regularization paths. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, AAAI Press, pp. 1278–1283 (2007).

  • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MATH  Google Scholar 

  • Scutari, M.: Learning bayesian networks with the bnlearn R package. J. Stat. Softw. 35(3), 1–22 (2010)

    Article  MathSciNet  Google Scholar 

  • Shastry, B.S.: Pharmacogenetics and the concept of individualized medicine. Pharm. J. 6(1), 16–21 (2006)

    Google Scholar 

  • Spirtes, P., Meek, C., Richardson, T.: An algorithm for causal inference in the presence of latent variables and selection bias. In: Glymour, C., Cooper, G. (eds.) Computation, Causation and Discovery, pp. 211–252. MIT Press, Cambridge (1999)

    Google Scholar 

  • Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search, 2nd edn. MIT Press, Cambridge (2000)

    Google Scholar 

  • Tsamardinos, I., Brown, E.L., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. J. Mach. Learn. Res. 65(1), 31–78 (2006)

    Article  Google Scholar 

  • van ’t Veer, L., Bernards, R.: Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452(7187), 564–570 (2008)

    Article  Google Scholar 

  • Whittaker, J.: Graphical Models in Applied Multivariate Statistics. John Wiley & Sons, Chichester (1990)

  • Williamson, J.: Bayesian Nets and Causality. Philosophical and Computational Foundations. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  • Witten, D.M., Friedman, J.H., Simon, N.: New insights and faster computations for the graphical lasso. J. Comput. Graph. Stat. 20(4), 892–900 (2011)

    Article  MathSciNet  Google Scholar 

  • Yuan, M., Lin, Y.: Model selection and estimation in the Gaussian graphical model. Biometrika 94(1), 19–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, J.: On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artif. Intell. 172(16), 1873–1896 (2008)

    Article  MATH  Google Scholar 

  • Zhang, X., Liang, H.: Focused information criterion and model averaging for generalized additive partial linear models. Ann. Stat. 39(1), 174–200 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao, T., Liu, H., Roeder, K., Lafferty, J., Wasserman, L.: The huge package for high-dimensional undirected graph estimation in R. J. Mach. Learn. Res. 13, 1059–1062 (2012)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the reviewers for their constructive comments. E. Pircalabelu and G. Claeskens acknowledge the support of the Fund for Scientific Research Flanders, KU Leuven grant GOA/12/14 and of the IAP Research Network P7/06 of the Belgian Science Policy. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government - department EWI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerda Claeskens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pircalabelu, E., Claeskens, G. & Waldorp, L. A focused information criterion for graphical models. Stat Comput 25, 1071–1092 (2015). https://doi.org/10.1007/s11222-014-9504-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-014-9504-y

Keywords

Navigation