Skip to main content
Log in

Minimax optimal designs via particle swarm optimization methods

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Particle swarm optimization (PSO) techniques are widely used in applied fields to solve challenging optimization problems but they do not seem to have made an impact in mainstream statistical applications hitherto. PSO methods are popular because they are easy to implement and use, and seem increasingly capable of solving complicated problems without requiring any assumption on the objective function to be optimized. We modify PSO techniques to find minimax optimal designs, which have been notoriously challenging to find to date even for linear models, and show that the PSO methods can readily generate a variety of minimax optimal designs in a novel and interesting way, including adapting the algorithm to generate standardized maximin optimal designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  • Berger, M.P.F.: Applied Optimal Designs. Wiley, New York (2005)

    Book  MATH  Google Scholar 

  • Berger, M.P.F., King, J., Wong, W.K.: Minimax \(D\)-optimal designs for item response theory models. Psychometrika 65(3), 377–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Bogacka, B., Patan, M., Johnson, P.J., Youdim, K., Atkinson, A.C.: Optimum design of experiments for enzyme inhibition linetic models. J. Biopharm. Stat. 21(3), 555–572 (2011)

    Article  MathSciNet  Google Scholar 

  • Broniatowski, M., Celant, G.: Optimality and bias of some interpolation and extrapolation designs. J. Stat. Plan. Inference 137(3), 858–868 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Brown, L.D., Wong, W.K.: An algorithmic construction of optimal minimax designs for heteroscedastic linear models. J. Stat. Plan. Inference 85(1–2), 103–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 33(3), 859–871 (2006)

    Article  MATH  Google Scholar 

  • Chen, R.B., Wong, W.K., Li, K.Y.: Optimal minimax designs over a prespecified interval in a heteroscedastic polynomial model. Stat. Probab. Lett. 78(13), 1914–1921 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Clerc, M.: Particle Swarm Optimization. Wiley, New York (2006)

    Book  MATH  Google Scholar 

  • Cook, R.D., Wong, W.K.: On the equivalence of constrained and compound optimal designs. J. Am. Stat. Assoc. 89, 687–692 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Dette, H., Biedermann, S.: Robust and efficient designs for the Michaelis–Menten model. J. Am. Stat. Assoc. 98(463), 679–686 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Dette, H., Wong, W.K.: \(E\)-optimal designs for the Michaelis–Menten model. Stat. Probab. Lett. 44(4), 405–408 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Eberhart, R., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proceedings of the Sixth International Symposium on, IEEE, Micro Machine and Human Science, 1995. MHS’95, pp. 39–43 (1995)

  • Eberhart, RC., Shi, Y.: Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In: Proceedings of the 2000 Congress on, IEEE, Evolutionary Computation, 2000, vol. 1, pp. 84–88 (2000)

  • Fan, S.K.S., Chang, J.M.: A Modified Particle Swarm Optimizer Using an Adaptive Dynamic Weight Scheme. In: Proceedings of the 1st International Conference on Digital Human Modeling, Springer, New York, pp. 56–65 (2007)

  • Farrell, E.H., Kiefer, J., Walbran, A.: Optimum Multivariate Designs. In: Le Cam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Probability and Mathematical Statistics, vol. 1, pp. 113–138. University of California Press (1968)

  • Fedorov, V.V.: Theory of Optimal Experiments. Academic press, New York (1972)

    Google Scholar 

  • Huang, Y.C., Wong, W.K.: Multiple-objective optimal designs. J. Biopharm. Stat. 8, 635–643 (1998)

    Article  MATH  Google Scholar 

  • Johnson, R.T., Montgomery, D.C., Jones, B.A.: An expository paper on optimal design. Qual. Eng. 23(3), 287–301 (2011)

    Article  Google Scholar 

  • Kiefer, J.: Collected Papers: Design of Experiments. Springer, New York (1985)

    Book  MATH  Google Scholar 

  • Kiefer, J., Wolfowitz, J.: The equivalence of two extremum problems. Can. J. Math. 12(3), 363–366 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer, J., Wolfowitz, J.: Optimum extrapolation and interpolation designs I. Ann. Inst. Stat. Math. 16(1), 79–108 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer, J., Wolfowitz, J.: Optimum extrapolation and interpolation designs II. Ann. Inst. Stat. Math. 16(1), 295–303 (1964)

    Article  MathSciNet  Google Scholar 

  • Kiefer, J., Wolfowitz, J.: On a theorem of Hoel and Levine on extrapolation designs. Ann. Math. Stat. 36(6), 1627–1655 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • King, J., Wong, W.K.: Optimal minimax designs for prediction in heteroscedastic models. J. Stat. Plan. Inference 69(2), 371–383 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • King, J., Wong, W.K.: Minimax \(D\)-optimal designs for the logistic model. Biometrics 56(4), 1263–1267 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Levine, A.: A problem in minimax cariance polynomial extrapolation. Ann. Math. Stat. 37(4), 898–903 (1966)

    Google Scholar 

  • Noubiap, R.F., Seidel, W.: A minimax algorithm for constructing optimal symmetrical balanced designs for a logistic regression model. J. Stat. Plan. Inference 91, 151–168 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Pázman, A.: Foundations of Optimum Experimental Design. Springer, New York (1986)

    MATH  Google Scholar 

  • Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intell. 1, 33–57 (2007)

    Article  Google Scholar 

  • Rodriguez, M., Jones, B., Borror, C.M., Montgomery, D.C.: Generating and assessing exact \(G\)-optimal designs. J. Qual. Technol. 42, 3–20 (2010)

    Google Scholar 

  • Shi, Y., Eberhart, R.: A Modified Particle Swarm Optimizer. In: Evolutionary Computation Proceedings, 1998. The 1998 IEEE International Conference on, IEEE, IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)

  • Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Porto, V.W., Waagen, D. (eds.) Evolutionary Programming VII, pp. 591–600. Springer, New York (1998)

    Chapter  Google Scholar 

  • Shor, N.Z.: The Subgradient Method. Springer, New York (1985)

    Book  Google Scholar 

  • Silvey, S.D.: Optimal Design. Chapman & Hall, London (1980)

    Book  MATH  Google Scholar 

  • Sitter, R.R.: Robust designs. Biometrics 48, 1145–1155 (1992)

    Article  MathSciNet  Google Scholar 

  • Spruill, M.C.: Optimal designs for minimax extrapolation. J. Multivar. Anal. 15(1), 52–62 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Spruill, M.C.: Optimal designs for multivariate interpolation. J. Multivar. Anal. 34(1), 141–155 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Whitacre, J.M.: Recent trends indicate rapid growth of nature-inspired optimization in academia and industry. Computing 93, 121–133 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  • Whitacre, J.M.: Survival of the flexible: explaining the recent dominance of nature-inspired optimization within a rapidly evolving world. Computing 93, 135–146 (2011b)

    Article  MathSciNet  MATH  Google Scholar 

  • Wong, W.K.: A unified approach to the construction of minimax designs. Biometrika 79(3), 611 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Wong, W.K., Cook, R.D.: Heteroscedastic \(G\)-optimal designs. J. R. Stat. Soc. Ser. B 55(4), 871–880 (1993)

    MathSciNet  MATH  Google Scholar 

  • Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, New York (2010)

    Book  Google Scholar 

  • Zhu, W., Wong, W.K.: Dual-objective Bayesian optimal designs for a dose-ranging study. Drug Inf. J. 34, 421–428 (2000)

    Google Scholar 

  • Zhu, W., Wong, W.K.: Bayesian optimal designs for estimating a set of symmetric quantiles. Stat. Med. 20, 123–137 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

Weng Kee Wong worked on the manuscript when he was a visiting fellow at The Sir Isaac Newton Institute at Cambridge, England and a scientific advisor for a 6-month workshop in the design and analysis of experiment. He would like to thank Professor Rosemary Bailey for hosting the workshop and the Institute for the support during his repeated visits there in the second half of 2011. This research of Weng Kee Wong was also partially supported by NSC, Mathematics Research Promotion Center with grant number 102-51 and the Ministry of Education, Taiwan, R.O.C. The Aim for the Top University Project to the National Cheng Kung University (NCKU). The research of Ray-Bing Chen was partially supported by the National Science Council of Taiwan with grant number 101-2118-M-006-002-MY2 and the Mathematics Division of the National Center for Theoretical Sciences (South) in Taiwan. The research of Weichung Wang was partially supported by the National Science Council of Taiwan and the Taida Institute of Mathematical Sciences. We thank the editorial team for all the helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weichung Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, RB., Chang, SP., Wang, W. et al. Minimax optimal designs via particle swarm optimization methods. Stat Comput 25, 975–988 (2015). https://doi.org/10.1007/s11222-014-9466-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-014-9466-0

Keywords

Navigation