Skip to main content
Log in

The Combination of Capon Inversion Algorithm with Backscattering Statistical Models to Enhance Forest Height Estimation in a Tomographic SAR Application

  • Research
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Synthetic aperture radar tomography is a technique that can be used to retrieve the digital surface model of a studied area. It is based on the acquisition of N images of the same scene obtained at different viewing angles to retrieve backscattering profile. Many standard inversion techniques exist in the literature, but in this paper, we mainly focus on increasing the performances of Capon inversion. This algorithm is a non parametric estimation method, it is able to retrieve the volume height of forested area. Although, Capon inversion gives acceptable results, it is possible through using backscattering statistical models to increase the performances of Capon algorithm. In this paper, we present new hybrid algorithms, based on the combination of Capon inversion with statistical models of the reflectivity signal. We selected three models for the volume height, uniform distribution, exponential distribution, and Gaussian distribution, and for each probability distribution, we have computed analytically the corresponding hybrid inversion. To validate the proposed approach, we used the BioSAR 2008 dataset obtained in a boreal forest situated in northern Sweden. Results of the proposed algorithms are validated quantitatively by measuring the detection rate of the forest height according to the relative error for the whole area. Qualitatively, by analyzing images of DSM, relative error and generated histograms. It was proven that the combination between Capon inversion and a Gaussian model yields the best detection rate of 50.4% for a relative error of 0.3. The exponential model achieved 47.6%, the uniform model 42.6% and the standard Capon 38.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Reigber, A., & Moreira, A. (2000). First demonstration of airborne SAR-tomography using multibaseline L-band data. IEEE Transaction on Geoscience and Remote Sensing, 38(5), 2142–2152. https://doi.org/10.1109/36.868873

    Article  Google Scholar 

  2. Tebaldini, S. (2009). Algebraic synthesis of forest scenarios from multibaseline PolInSAR data. IEEE Transaction on Geoscience and Remote Sensing, 47(12), 4132–4142. https://doi.org/10.1109/TGRS.2009.2023785

    Article  Google Scholar 

  3. Tebaldini, S., & Rocca, F. (2012). Multibaseline polarimetric SAR tomography of a boreal forest at P and L-bands. IEEE Transaction on Geoscience and Remote Sensing, 50(1), 232–246. https://doi.org/10.1109/TGRS.2011.2159614

    Article  Google Scholar 

  4. Mahgoun, H., & Ouarzeddine, M. (2016). Volume height estimation based on fusion of discrete fourier transform (DFT) and least square (LS) in a tomographic SAR application. Journal of the Indian Society of Remote Sensing, 45(2), 217–228. https://doi.org/10.1007/s12524-016-0591-4

    Article  Google Scholar 

  5. Mahgoun, H., Ouarzeddine, M., & Chaffa, N. H. (2018). A comparative analysis between an hybrid MUSIC-LS algorithm and the standard MUSIC for volume height estimation in tomography-SAR. The International Conference on Signal, Image, Vision and their Applications-SIVA’18. doi https://doi.org/10.1109/SIVA.2018.8661142

  6. Blomberg, E., Ferro-Famil, L., Soja, M. J., Ulander, L. M. H., & Tebaldini, S. (2018). Forest biomass retrieval from L-band SAR using tomographic ground backscatter removal. IEEE Geoscience and Remote Sensing Letters, 15(7), 1030–1034. https://doi.org/10.1109/LGRS.2018.2819884

    Article  Google Scholar 

  7. Yang, X., Tebaldini, S., Mariotti d’Alessandro, M., & Liao, M. (2019). Tropical forest height retrieval based on P-band multibaseline SAR data. IEEE Geoscience and Remote Sensing Letters, 17(3), 451–455. https://doi.org/10.1109/LGRS.2019.2923252

    Article  Google Scholar 

  8. Aghababaei, H., Ferraioli, G., Ferro-famil, L., Huang, Y., Alessandro, M., Pascazio, A. V., Schirinzi, G., & Tebaldini, S. (2020). Forest SAR tomography principles and applications. IEEE Geoscience and Remote Sensing Magazine, 8(2), 30–45. https://doi.org/10.1109/MGRS.2019.2963093

    Article  Google Scholar 

  9. Yu, Y., Mariotti d’Alessandro, M., Tebaldini, S., & Liao, M. (2020). Signal processing options for high resolution SAR tomography of natural scenarios. Remote Sens, 12(10), 1638. https://doi.org/10.3390/rs12101638

    Article  Google Scholar 

  10. Tebaldini, S., Yang, X., Bai, Y., Mariotti d’Alessandro, M., Liao, M., & Yang, W. (2021). Progresses on SAR remote sensing of tropical forests: Forest biomass retrieval and analysis of changing weather conditions. Journal of Geodesy and Geoinformation Science., 4(1), 88–93.

    Google Scholar 

  11. Wan, X., Li, Z., Chen, E., Zhao, L., Zhang, W., & Xu, K. (2021). Forest aboveground biomass estimation using multi-features extracted by fitting vertical backscattered power profile of tomographic SAR. Remote Sens, 13(2), 186. https://doi.org/10.3390/rs13020186

    Article  Google Scholar 

  12. Liu, W., Member-Budillon, A., Pascazio, V., Schirinzi, G., & Xing, M. (2022). Performance improvement for SAR tomography based on local plane model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing., 15, 2298–2310. https://doi.org/10.1109/JSTARS.2022.3151725

    Article  Google Scholar 

  13. Lu, H., Fan, H., Zhang, H., Liu, D., & Zhao, L. (2022). A modified capon method for SAR tomography over forest. IEEE Geoscience and Remote Sensing Letters., 19, 4007905. https://doi.org/10.1109/LGRS.2020.3047196

    Article  Google Scholar 

  14. Mahgoun, H., Taieb, A., Azmedroub, B., & Ouarzeddine, M. (2022). Combination of MUSIC inversion algorithm with SKP decomposition for forest height estimation in a Tomography SAR application. The seventh international conference on image and signal processing and their applications, University of Abdelhamid Ibn Badis, Mostaganem, Algeria. doi https://doi.org/10.1109/ISPA54004.2022.9786332

  15. Zhu, X., & Bamler, R. (2010). Very high resolution spaceborne SAR tomography in urban environment. IEEE Transactions on Geoscience and Remote Sensing., 48(12), 4296–4308. https://doi.org/10.1109/TGRS.2010.2050487

    Article  Google Scholar 

  16. Zhu, X., & Bamler, R. (2012). Demonstration of super-resolution for tomographic SAR imaging in urban environment. IEEE Transaction on Geoscience and Remote Sensing., 50(8), 3150–3157. https://doi.org/10.1109/TGRS.2011.2177843

    Article  Google Scholar 

  17. Frey, O., & Morsdorf, F. (2008). Tomographic imaging of a forested area by airborne multi-baseline P-band SAR. Sensors, 8, 5884–5896. https://doi.org/10.3390/s8095884

    Article  Google Scholar 

  18. Frey, O. (2010). Synthetic aperture radar imaging in the time domain for nonlinear sensor trajectories and SAR tomography. Remote Sensing Series, Zurich Remote Sensing Laboratories, 59, 1–168. https://doi.org/10.5167/uzh-45767

    Article  Google Scholar 

  19. Mahgoun, H. (2017). Tomographie SAR pour la détermination des hauteurs des structures urbaines et forestières, PhD thesis, Faculty of electronic, USTHB, Algiers, pp 1–154.

  20. BioSAR-2. (2008). Technical assistance for the development of airborne SAR and geophysical measurements during the BioSAR 2008 experiment. Final report prepared for European space agency (ESA), pp 1–285. https://doi.org/10.5270/esa-i73gc4g

  21. Bamler, R., & Hartl, P. (1998). Synthetic aperture radar interferometry, topical review. Inverse Problems, 14(4), 1–54.

    Article  MathSciNet  Google Scholar 

  22. Papathanassiou, K., & Cloude, S. R. (2001). Single-baseline polarimetric SAR interferometry. IEEE Transaction on Geoscience and Remote Sensing, 39(11), 2352–2363. https://doi.org/10.1109/36.964971

    Article  Google Scholar 

  23. Moreira, A., Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A Tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine. https://doi.org/10.1109/MGRS.2013.2248301

    Article  Google Scholar 

  24. Mahgoun, H., Taieb, A., Azmedroub, B., & Souissi, B. (2022a). Generalized Pareto distribution exploited for ship detection as a model for sea clutter in a Pol-SAR application. The seventh international conference on image and signal processing and their applications, University of Abdelhamid Ibn Badis, Mostaganem, Algeria. doi https://doi.org/10.1109/ISPA54004.2022.9786320

  25. Mahgoun, H., Chaffa, N. E., Ouarzeddine, M., & Boularbah, S. (2020). Application of polarimetric-SAR decompositions on RADARSAT-2 fine quad-pol images to enhance the performances of ships detection algorithms. Sens Imaging, 21, 56. https://doi.org/10.1007/s11220-020-00321-3

    Article  Google Scholar 

  26. Mahgoun, H., Chaffa, N. E., Ouarzeddine, M., & Souissi, B. (2022). The combination of singular values decomposition with constant false alarm algorithms to enhance ship detection in a polarimetric SAR application. Remote Sensing Applications: Society and Environment, 27, 100815. https://doi.org/10.1016/j.rsase.2022.100815

    Article  Google Scholar 

  27. Oberhettinger, F. (1990). Tables of fourier transforms and fourier transforms of distributions. Springer-Verlag: Berlin and Heidelberg. pp 1–259. doi https://doi.org/10.1007/978-3-642-74349-8.

  28. Stoica, P., & Randolph, M. (2005). Spectral analysis of signal (pp. 1–480). Prentice Hall.

    Google Scholar 

  29. Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8), 1408–1418. https://doi.org/10.1109/PROC.1969.7278

    Article  Google Scholar 

  30. BioSAR. (2007). Technical assistance for the development of airborne SAR and geophysical measurements during the BioSAR 2007. Experiment. Final report prepared for European space agency (ESA), pp 1–217. https://doi.org/10.5270/esa-f2h3ory

  31. BioSAR 3. (2010). Technical assistance for the development of airborne SAR and geophysical measurements during the BioSAR 2010 experiment. Final report prepared for European space agency (ESA), pp 1–212. https://doi.org/10.5270/esa-xh7orts

  32. AfriSAR. (2015). Technical Assistance for the development of Airborne SAR and geophysical measurements during the AfriSAR experiment. Final report prepared for European Space Agency (ESA), pp 1–185. https://doi.org/10.5270/esa-xxpt0lc

  33. ESA. (2012). Report for mission selection: Biomass, ESA SP-1324/1 (3 volume series). European Space Agency (ESA). Noordwijk, the Netherlands. pp. 1–204

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Manuscript title : The combination of CAPON inversion algorithm with backscattering statistical models to enhance forest height estimation in a tomographic SAR application. All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance in the Sensing and Imaging. Authorship contributions: Conception and design of study: H. Mahgoun, A. Taieb, B. Azmedroub , M. Ouarzeddine Acquisition of data: H. Mahgoun Analysis and/or interpretation of data: H. Mahgoun, A. Taieb, B Drafting the manuscript: H. Mahgoun, A. Taieb, B. Azmedroub , M. Ouarzeddine Revising the manuscript critically for important intellectual content: H. Mahgoun, A. Taieb, B. Azmedroub, M. Ouarzeddine, Approval of the version of the manuscript to be published: H. Mahgoun, A. Taieb, B. Azmedroub , M. Ouarzeddine

Corresponding author

Correspondence to Hichem Mahgoun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahgoun, H., Taieb, A., Azmedroub, B. et al. The Combination of Capon Inversion Algorithm with Backscattering Statistical Models to Enhance Forest Height Estimation in a Tomographic SAR Application. Sens Imaging 25, 5 (2024). https://doi.org/10.1007/s11220-023-00452-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-023-00452-3

Keywords

Navigation