Skip to main content
Log in

A Novel Ultrasound Elastography Configuration for Simultaneous Measurement of Contact Forces

  • Research
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

The current state of clinical strain ultrasound elastography scanning is marked by the absence of a quantifiable, consistent, and reproducible method for measuring the contact pressure applied by the ultrasound transducer during the scanning process. This gap presents a significant challenge as it restricts the ability to control the factors that might influence imaging outcomes, such as operator variations. On the other hand, quantitative transducer contact pressure measurements implemented in ultrasound strain elastography imaging is a promising solution to reduce the impact of operator variations on imaging outcomes and produce instantaneous quantitative estimations of Young’s modulus. Using miniature pressure sensors with the required accuracy would enable contact pressure measurement in ultrasound strain elastography. An inhomogeneous phantom with multiple layers, each with different mechanical properties, showed an elevated stress magnitude with a decreasing pattern closer to the irregular boundary. Additionally, the surface contact pressure and internal stress distribution studies on phantoms showed good agreement with our finite element method models, with error values of less than 10%. This shows that during breast deformation, the pressure sensor arrays are able to detect initial contact and measure contact pressure. In accordance with the findings and estimated errors from simulation studies and obtained pressure values from pressure sensors, our approach can depict the stress distribution and facilitates assessing the contract pressure during ultrasound strain elastography imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of Data and Materials

The dataset generated during and/or analysed during the current study are available from the corresponding author on reasonable request. Please send an email to taradiba@gwu.edu.

References

  1. Fung, Y. (2013). Biomechanics: mechanical properties of living tissues. Retrieved from https://books.google.com/books?hl=en&lr=&id=yx3aBwAAQBAJ&oi=fnd&pg=PR7&dq=Mechanical+Properties+of+Living+Tissues&ots=fKklbzMksw&sig=vLeDK93TaqtETa-GKrQtJUhhXbQ

  2. Kumm, T. R., & Szabunio, M. M. (2010). Elastography for the characterization of breast lesions: Initial clinical experience. Cancer Control: Journal of the Moffitt Cancer Center, 17(3), 156–161. https://doi.org/10.1177/107327481001700303

    Article  Google Scholar 

  3. Sigrist, R. M., Liau, J., El Kaffas, A., Chammas, M. C., & Willmann, J. K. (2017). Ultrasound elastography: Review of techniques and clinical applications. ncbi.nlm.nih.gov. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399595/

  4. Ophir, J., Céspedes, I., Ponnekanti, H., Yazdi, Y., & li, X. (1991). Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging, 13(2), 111–134. https://doi.org/10.1177/016173469101300201

    Article  Google Scholar 

  5. Shiina, T., Nightingale, K. R., Palmeri, M. L., Hall, T. J., Bamber, J. C., Barr, R. G., Kudo, M., & Kudo, M. (2015). WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: Basic principles and terminology. Ultrasound in Medicine and Biology, 41(5), 1126–1147. https://doi.org/10.1016/J.ULTRASMEDBIO.2015.03.009

    Article  Google Scholar 

  6. Burnside, E. S., Hall, T. J., Sommer, A. M., Hesley, G. K., Sisney, G. A., Svensson, W. E., Hangiandreou, N. J., & Hangiandreou, N. J. (2007). Differentiating benign from malignant solid breast masses with US strain imaging. Radiology, 245(2), 401–410. https://doi.org/10.1148/radiol.2452061805

    Article  Google Scholar 

  7. Itoh, A., Ueno, E., Tohno, E., Kamma, H., Takahashi, H., Shiina, T., & Matsumura, T. (2006). Breast disease: Clinical application of US elastography for diagnosis. Radiology. https://doi.org/10.1148/radiol.2391041676

    Article  Google Scholar 

  8. Barr, R. G. (2012). Sonographic breast elastography. Journal of Ultrasound in Medicine, 31(5), 773–783. https://doi.org/10.7863/JUM.2012.31.5.773

    Article  Google Scholar 

  9. Doyley, M. M. (2012). Model-based elastography: A survey of approaches to the inverse elasticity problem. In Physics in Medicine and Biology. NIH Public Access. https://doi.org/10.1088/0031-9155/57/3/R35

  10. Gennisson, J.-L., Deffieux, T., Fink, M., & Tanter, M. (2013). Ultrasound elastography: principles and techniques. Diagnostic and Interventional Imaging, 94, 487–495. https://doi.org/10.1016/j.diii.2013.01.022

    Article  Google Scholar 

  11. Schwab, F., Redling, K., Siebert, M., Schötzau, A., Schoenenberger, C. A., & Zanetti-Dällenbach, R. (2016). Inter- and intra-observer agreement in ultrasound BI-RADS classification and real-time elastography tsukuba score assessment of breast lesions. Ultrasound in Medicine and Biology, 42(11), 2622–2629. https://doi.org/10.1016/J.ULTRASMEDBIO.2016.06.017

    Article  Google Scholar 

  12. Zhi, H., Xiao, X. Y., Yang, H. Y., Ou, B., Wen, Y. L., & Luo, B. M. (2010). Ultrasonic elastography in breast cancer diagnosis. Strain ratio vs 5-point scale. Academic Radiology, 17(10), 1227–1233. https://doi.org/10.1016/J.ACRA.2010.05.004

    Article  Google Scholar 

  13. Farrokh, A., Wojcinski, S., & Degenhardt, F. (2011). Diagnostische Aussagekraft der Strain-Ratio-Messung zur Unterscheidung zwischen malignen und benignen Brusttumoren. Ultraschall in der Medizin, 32(4), 400–405. https://doi.org/10.1055/S-0029-1245335/ID/21

    Article  Google Scholar 

  14. Gupta, A. K., Garg, A., & Sandhu, M. S. (2019). Diagnostic radiology: Advances in imaging technology (p. 528).

  15. Garra, B. S. (2007). Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Quarterly. https://doi.org/10.1097/ruq.0b013e31815b7ed6

    Article  Google Scholar 

  16. Landau, L. D., & Lifshits, E. M. (1986). Course of theorical physics: Theory of elasticity. Pergamon Press.

  17. Doyley, M. M., Meaney, P. M., & Bamber, J. C. (2000). Evaluation of an iterative reconstruction method for quantitative elastography. Physics in Medicine and Biology, 45(6), 1521–1540. https://doi.org/10.1088/0031-9155/45/6/309

    Article  Google Scholar 

  18. Burcher, M. R., Noble, J. A., Han, L., & Gooding, M. (2005). A system for simultaneously measuring contact force, ultrasound, and position information for use in force-based correction of freehand scanning. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(8), 1330–1342. https://doi.org/10.1109/TUFFC.2005.1509791

    Article  Google Scholar 

  19. Gilbertson, M. W. (2010). Handheld force-controlled ultrasound probe. Retrieved from https://dspace.mit.edu/handle/1721.1/63232

  20. Gilbertson, M., Anthony Matthew Gilbertson, B. W., Anthony, B. W., & Gilbertson, M. W. (2011). Impedance-controlled ultrasound probe. Proceedings of the SPIE, 7968, 348–359. https://doi.org/10.1117/12.882169

    Article  Google Scholar 

  21. Gilbertson, M. W., & Anthony, B. W. (2012). Ergonomic control strategies for a handheld force-controlled ultrasound probe. In IEEE International Conference on Intelligent Robots and Systems (pp. 1284–1291). https://doi.org/10.1109/IROS.2012.6385996

  22. Gilbertson, M. W., & Anthony, B. W. (2015). Force and position control system for freehand ultrasound. IEEE Transactions on Robotics, 31(4), 835–849. https://doi.org/10.1109/TRO.2015.2429051

    Article  Google Scholar 

  23. Gilbertson, M. W., & Anthony, B. W. (2013). An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 140–143). https://doi.org/10.1109/EMBC.2013.6609457

  24. Chadli, S., Ababou, N., Ababou, A., Djelal, N., & Saadia, N. (2012). A removable device for axial force and orientation measurement on medical ultrasound probe. In International Multi-Conference on Systems, Signals and Devices, SSD 2012—Summary Proceedings. https://doi.org/10.1109/SSD.2012.6198073

  25. Heres, M. (n.d.). Photoacoustic and ultrasound imaging of perfusion in skin and skeletal muscle.

  26. Love, A. E. H. (1929). IX. The stress produced in a semi-infinite solid by pressure on part of the boundary. Philosophical Transactions of the Royal Society of London. Series A Containing Papers of a Mathematical or Physical Character, 228(659–669), 377–420. https://doi.org/10.1098/RSTA.1929.0009

    Article  Google Scholar 

  27. Cao, Y., Li, G. Y., Zhang, X., & Liu, Y. L. (2017). Tissue-mimicking materials for elastography phantoms: A review. Extreme Mechanics Letters, 17, 62–70. https://doi.org/10.1016/J.EML.2017.09.009

    Article  Google Scholar 

  28. Manickam, K., Reddy, M. R., Seshadri, S., & Raghavan, B. (2015). Development of a training phantom for compression breast elastography—comparison of various elastography systems and numerical simulations. Journal of Medical Imaging, 2(4), 047002. https://doi.org/10.1117/1.JMI.2.4.047002

    Article  Google Scholar 

  29. Teirlinck, C., Bezemer, R., Kollmann, C., et al. (1998). Development of an example flow test object and comparison of five of these test objects, constructed in various laboratories. Ultrasonics, 36, 653–660.

    Article  Google Scholar 

  30. Hall, T. J., Bilgen, M., Insana, M. F., & Krouskop, T. A. (1997). Phantom materials for elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44(6), 1355–1365. https://doi.org/10.1109/58.656639

    Article  Google Scholar 

  31. Madsen, E. L., Hobson, M. A., Shi, H., Varghese, T., & Frank, G. R. (2005). Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms. Physics in Medicine and Biology, 50(23), 5597–5618. https://doi.org/10.1088/0031-9155/50/23/013

    Article  Google Scholar 

  32. Madsen, E. L., Hobson, M. A., Frank, G. R., Shi, H., Jiang, J., Hall, T. J., Weaver, J. B., & Weaver, J. B. (2006). Anthropomorphic breast phantoms for testing elastography systems. Ultrasound in Medicine and Biology, 32(6), 857–874. https://doi.org/10.1016/j.ultrasmedbio.2006.02.1428

    Article  Google Scholar 

  33. Madsen, E. L., Frank, G. A., Krouskop, T. A., Varghese, T., Kallel, F., & Ophir, A. (2003). Tissue-mimicking oil-in-gelatin dispersions for use in heterogeneous elastography phantoms. Ultrasonic imaging (Vol. 25).

  34. Surry, K. J. M., Austin, H. J. B., Fenster, A., & Peters, T. M. (2004). Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging. Physics in Medicine and Biology, 49(24), 5529–5546. https://doi.org/10.1088/0031-9155/49/24/009

    Article  Google Scholar 

  35. Kharine, A., Manohar, S., Seeton, R., Kolkman, R. G. M., Bolt, R. A., Steenbergen, W., & de Mul, F. F. M. (2003). Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography. Physics in Medicine and Biology, 48(3), 357–370. https://doi.org/10.1088/0031-9155/48/3/306

    Article  Google Scholar 

  36. Hipwell, J. H., Vavourakis, V., & Han, L. (2010). An elastically compressible phantom material with mechanical and x-ray attenuation properties equivalent to breast tissue Related content A review of biomechanically informed breast image registration. Physics in Medicine & Biology, 55(4), 1177. https://doi.org/10.1088/0031-9155/55/4/018

    Article  Google Scholar 

  37. Vogt, W. C., Jia, C., Wear, K. A., Garra, B. S., & Joshua Pfefer, T. (2016). Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties. Journal of Biomedical Optics, 21(10), 101405. https://doi.org/10.1117/1.jbo.21.10.101405

    Article  Google Scholar 

  38. Jia, C., Vogt, W. C., Wear, K. A., Pfefer, T. J., & Garra, B. S. (2017). Two-layer heterogeneous breast phantom for photoacoustic imaging. Journal of Biomedical Optics, 22(10), 1. https://doi.org/10.1117/1.jbo.22.10.106011

    Article  Google Scholar 

  39. Chatelin, S., Breton, E., Arulrajah, A., Giraudeau, C., Wach, B., Meylheuc, L., & Vappou, J. (2020). Investigation of polyvinyl chloride plastisol tissue-mimicking phantoms for MR- and ultrasound-elastography. Frontiers in Physics, 8, 522. https://doi.org/10.3389/FPHY.2020.577358/BIBTEX

    Article  Google Scholar 

  40. De Carvalho, I. M., De Matheo, L. L., Costa Júnior, J. F. S., Borba, C. D. M., Von Krüger, M. A., Infantosi, A. F. C., & Pereira, W. C. D. A. (2016). Polyvinyl chloride plastisol breast phantoms for ultrasound imaging. Ultrasonics, 70, 98–106. https://doi.org/10.1016/J.ULTRAS.2016.04.018

    Article  Google Scholar 

  41. Leonov, D., Venidiktova, D., Costa-Júnior, J. F. S., Nasibullina, A., Tarasova, O., Pashinceva, K., & Saikia, M. J. (2023). Development of an anatomical breast phantom from polyvinyl chloride plastisol with lesions of various shape, elasticity and echogenicity for teaching ultrasound examination. International Journal of Computer Assisted Radiology and Surgery. https://doi.org/10.1007/S11548-023-02911-4/METRICS

    Article  Google Scholar 

  42. Bohndiek, S. E., Bodapati, S., Van De Sompel, D., Kothapalli, S. R., & Gambhir, S. S. (2013). Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0075533

    Article  Google Scholar 

  43. Bakaric, M., Miloro, P., Zeqiri, B., Cox, B. T., & Treeby, B. E. (2020). The effect of curing temperature and time on the acoustic and optical properties of PVCP. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(3), 505–512. https://doi.org/10.1109/TUFFC.2019.2947341

    Article  Google Scholar 

  44. De Matheo, L. L., Geremia, J., Calas, M. J. G., Costa-Júnior, J. F. S., da Silva, F. F. F., von Krüger, M. A., & de Pereira, W. C. (2018). PVCP-based anthropomorphic breast phantoms containing structures similar to lactiferous ducts for ultrasound imaging: A comparison with human breasts. Ultrasonics, 90, 144–152. https://doi.org/10.1016/j.ultras.2018.06.013

    Article  Google Scholar 

  45. Li, W., Belmont, B., Greve, J. M., Manders, A. B., Downey, B. C., Zhang, X., Shih, A., & Shih, A. (2016). Polyvinyl chloride as a multimodal tissue-mimicking material with tuned mechanical and medical imaging properties. Medical Physics, 43(10), 5577–5592. https://doi.org/10.1118/1.4962649

    Article  Google Scholar 

  46. Fonseca, M., Zeqiri, B., Beard, P., & Cox, B. (2014). Characterisation of a PVCP based tissue-mimicking phantom for quantitative photoacoustic imaging. In Optics InfoBase Conference Papers. OSA—The Optical Society. https://doi.org/10.1117/12.2183684

  47. Samani, A., & Zubovits,. (2007). Elastic moduli of normal and pathological human breast tissues: An inversion-technique-based investigation of 169 samples. Physics in Medicine and Biology. https://doi.org/10.1088/0031-9155/52/6/002

    Article  Google Scholar 

  48. Krouskop, T. A., Wheeler, T. M., Kallel, F., Garra, B. S., & Hall, T. (1998). Elastic moduli of breast and prostate tissues under compression. Ultrasonic Imaging, 20(4), 260–274. https://doi.org/10.1177/016173469802000403

    Article  Google Scholar 

  49. Ramião, N. G., Martins, P. S., Rynkevic, R., Fernandes, A. A., Barroso, M., & Santos, D. C. (2016). Biomechanical properties of breast tissue, a state-of-the-art review. Biomechanics and Modeling in Mechanobiology, 15(5), 1307–1323. https://doi.org/10.1007/S10237-016-0763-8/TABLES/3

    Article  Google Scholar 

  50. Sarvazyan, A., Goukassian, D., Maevsky, E., & Oranskaja, G. (1994). Elastic imaging as a new modality of medical imaging for cancer detection. In Proceedings of the International Workshop on Interaction of Ultrasound with Biological Media (pp. 69–81).

  51. Sarvazyan, A. P., Skovoroda, A. R., Emelianov, S. Y., Fowlkes, J. B., Pipe, J. G., Adler, R. S., Carson, P. L. (1995). Biophysical bases of elasticity imaging (pp. 223–240). https://doi.org/10.1007/978-1-4615-1943-0_23

  52. Wellman, P. S., Howe, R. D., Dalton, E., & Kern, K. A. (n.d.). Breast tissue stiffness in compression is correlated to histological diagnosis.

  53. Wellman, P., Howe, R., & Kern, K. (1999). Breast tissue stiffness in compression is correlated to histological diagnosis.

  54. Uff, C., Garcia, L., Fromageau, J., Chakraborty, A., Dorward, N., & Bamber, J. (2018). Further characterization of changes in axial strain elastograms due to the presence of slippery tumor boundaries. Journal of Medical Imaging, 5(2), 021211. https://doi.org/10.1117/1.JMI.5.2.021211

    Article  Google Scholar 

  55. Biomechanics, K. M.-J., & 2005, undefined. (n.d.). Method of testing very soft biological tissues in compression. Elsevier. Retrieved from https://www.sciencedirect.com/science/article/pii/S0021929004001447?casa_token=DsYYsyVDUGUAAAAA:YCm5aymr-wsDG_U9EwtiawiVQkKyZu-zgb8IVM-W7T5tURnLhv80jHekK6FrzX-0I73S5YY4yg

  56. Lu, M., Zhang, H., Wang, J., Yuan, J., Hu, Z., & Liu, H. (2013). Reconstruction of elasticity: A stochastic model-based approach in ultrasound elastography. BioMedical Engineering Online, 12(1), 1–19. https://doi.org/10.1186/1475-925X-12-79/FIGURES/5

    Article  Google Scholar 

  57. Hall, T. J. (2003). AAPM/RSNA physics tutorial for residents: topics in US—beyond the basics: Elasticity imaging with US. Radiographics, 23(6), 1657–1671. https://doi.org/10.1148/RG.236035163

    Article  Google Scholar 

  58. Pressure Profile Systems® | Tactile Pressure Mapping Systems. (n.d.). Retrieved August 9, 2023. https://pressureprofile.com/

  59. PPS Digitacts—PPS. (n.d.). Retrieved August 9, 2023, from https://pressureprofile.com/sensors/digitacts

  60. Chameleon Visualization Software—PPS. (n.d.). Retrieved August 10, 2023, from https://pressureprofile.com/sensor-systems/software

  61. Zienkiewicz, O. C., Taylor, R. L., & Fox, D. (2013). The Finite Element Method for Solid and Structural Mechanics: Seventh Edition. The Finite Element Method for Solid and Structural Mechanics: Seventh Edition, 1–624. https://doi.org/10.1016/C2009-0-26332-X

  62. Yu, Z., Zhan, J., Wang, H., Cai, Y., Wu, Z., Afriana, R. D., & Afriana, R. D. (2018). The study of mechanical properties and relaxation time of agar hydrogel for tissue mimicking phantom material in magnetic resonance imaging. IOP Conference Series: Materials Science and Engineering, 395(1), 012022. https://doi.org/10.1088/1757-899X/395/1/012022

    Article  Google Scholar 

  63. Madsen, E. L., Zagzebski, J. A., Banjavie, R. A., & Jutila, R. E. (1978). Tissue mimicking materials for ultrasound phantoms. Medical Physics, 5(5), 391–394. https://doi.org/10.1118/1.594483

    Article  Google Scholar 

  64. Madsen, E. L., Hobson, M. A., Shi, H., Varghese, T., & Frank, G. R. (2006). Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels. Ultrasound in Medicine and Biology, 32(2), 261–270. https://doi.org/10.1016/j.ultrasmedbio.2005.10.009

    Article  Google Scholar 

  65. Cabrelli, L. C., Grillo, F. W., Sampaio, D. R. T., Carneiro, A. A. O., & Pavan, T. Z. (2017). Acoustic and elastic properties of glycerol in oil-based gel phantoms. Undefined, 43(9), 2086–2094. https://doi.org/10.1016/J.ULTRASMEDBIO.2017.05.010

    Article  Google Scholar 

  66. Nguyen, M. M., Zhou, S., Robert, J., Shamdasani, V., & Xie, H. (2014). Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography. Undefined, 40(1), 168–176. https://doi.org/10.1016/J.ULTRASMEDBIO.2013.08.020

    Article  Google Scholar 

  67. Oudry, J., Bastard, C., Miette, V., Willinger, R., & Sandrin, L. (2009). Copolymer-in-oil phantom materials for elastography. Ultrasound in Medicine & Biology, 35(7), 1185–1197. https://doi.org/10.1016/J.ULTRASMEDBIO.2009.01.012

    Article  Google Scholar 

  68. Suzuki, A., Tsubota, Y., Wu, W., Yamanaka, K., Terada, T., Otake, Y., & Kawabata, K. (2019). Oil gel-based phantom for evaluating quantitative accuracy of speed of sound measured in ultrasound computed tomography. Ultrasound in Medicine & Biology, 45(9), 2554–2567. https://doi.org/10.1016/J.ULTRASMEDBIO.2019.05.011

    Article  Google Scholar 

  69. Egorov, V., & Sarvazyan, A. P. (2008). Mechanical imaging of the breast. IEEE Transactions on Medical Imaging, 27(9), 1275–1287. https://doi.org/10.1109/TMI.2008.922192

    Article  Google Scholar 

  70. Matthew Wright Gilbertson, by. (2014). Electromechanical systems to enhance the usability and diagnostic capabilities of ultrasound imaging. Retrieved from https://dspace.mit.edu/handle/1721.1/96459

  71. Dhyani, M., Roll, S. C., Gilbertson, M. W., Orlowski, M., Anvari, A., Li, Q., Samir, A. E., & Samir, A. E. (2017). A pilot study to precisely quantify forces applied by sonographers while scanning: A step toward reducing ergonomic injury. Work, 58(2), 241–247. https://doi.org/10.3233/WOR-172611

    Article  Google Scholar 

  72. Butcher, D. T., Alliston, T., & Weaver, V. M. (2009). A tense situation: Forcing tumour progression. Nature Reviews. Cancer, 9(2), 108–122. https://doi.org/10.1038/NRC2544

    Article  Google Scholar 

Download references

Acknowledgements

The mention of commercial entities, or commercial products, their source, or their use in connection with material reported herein is not to be constructed as either an actual or implied endorsement of such entities or products by the Department of Health and Human Services or the U.S. Food and Drug Administration. T. Diba acknowledges funding by appointment to the Research Participation Program at the Center for Device and Radiological Health administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. Food and Drug Administration.

Funding

Not funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Tara Diba composed the text of the manuscript, gathered, and analyzed the data, and prepared the figures and tables. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Tara Diba.

Ethics declarations

Competing interests

The authors declare that they have no competing interest.

Ethical Approval and Consent to participate

Not Applicable.

Consent for Publication

All authors consent to publish this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diba, T., Zara, J. A Novel Ultrasound Elastography Configuration for Simultaneous Measurement of Contact Forces. Sens Imaging 24, 30 (2023). https://doi.org/10.1007/s11220-023-00438-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-023-00438-1

Keywords

Navigation