Skip to main content
Log in

Neural Network Technique for Electronic Nose Based on High Sensitivity Sensors Array

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Electronic Nose, as an artificial olfaction system, has potential applications in environmental monitoring because of its proven ability to recognize and discriminate between a variety of different gases and odors. In this paper, we used a chemical sensor array to develop an electronic nose to detect and identify seven different gases (H2, C2H2, CH4, CH3OCH3, CO, NO2, and NH3). These gas sensors are chosen because of its hierarchical/doped nanostructure characteristics, which give them a very high sensitivity and low response time; we improve the linearity response and temperature dependence using models based on artificial neural networks. We used in Electronic nose a pattern recognition based on artificial neural network, which discriminates qualitatively and quantitatively seven gases and has a fast response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hwang, S., Kwon, H., Chhajed, S., Byon, J. W., Baik, J. M., Im, J., et al. (2013). A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose. Analyst, 138, 443. https://doi.org/10.1039/c2an35932d.

    Article  Google Scholar 

  2. Fan, G. K., Wang, Y., Hu, M., Lou, Z. Y., & Li, G. (2011). Synthesis of flower-like nano-SnO2 and a study of its gas sensing response. Measurement Science & Technology, 22, 045203–45204. https://doi.org/10.1088/0957-0233/22/4/045203.

    Article  Google Scholar 

  3. Khaldi, S., & Dibi, Z. (2016). ANN modeling of electronic nose based on co-doped SnO2 nanofiber sensor. Sensors & Transducers, 200(5), 24–28.

    Google Scholar 

  4. Akhtar, K., Haq, I. U., & Malook, K. (2015). Gas sensing properties of semiconducting copper oxide nanospheroids. Powder Technology, 283, 505–511. https://doi.org/10.1016/j.powtec.2015.06.023.

    Article  Google Scholar 

  5. Su, J., Li, Z., Zhang, Y., Wei, Y., & Wang, X. (2016). N-doped and Cu-doped TiO2-B nanowires with enhanced photoelectrochemical activity. RSC Advances, 6, 16177.

    Article  Google Scholar 

  6. Rani, R., & Sharma, S. (2016). Preparation and characterization of SnO2 nanofibers via electrospinning. Advances in Nanoparticles, 5, 53–59. https://doi.org/10.4236/anp.2016.51006.

    Article  Google Scholar 

  7. Yin, X., Zhang, L., Tian, F., & Zhang, D. (2016). Temperature modulated gas sensing e-nose system for low-cost and fast detection. IEEE Sensors Journal, 16(2), 464–474. https://doi.org/10.1109/jsen.2015.2483901.

    Article  Google Scholar 

  8. Khudair, B. H., Jasim, M. M., & Alsaqqar, A. S. (2018). Artificial neural network model for the prediction of groundwater quality. Civil Engineering Journal, 4(12), 2959–2970. https://doi.org/10.28991/cej-03091212.

    Article  Google Scholar 

  9. Bahrekazemi, S., & Hekmatzadeh, M. (2017). Neuro-simulation tool for enhanced oil recovery screening and reservoir performance prediction. Italian Journal of Science & Engineering, 2, 54–64. https://doi.org/10.28991/ijse-01111.

    Article  Google Scholar 

  10. Zamanisabzi, H., King, J. P., Dilekli, N., Shoghli, B., & Abudu, S. (2018). Developing an ANN based streamflow forecast model utilizing data-mining techniques to improve reservoir streamflow prediction accuracy: A case study. Civil Engineering Journal, 4(5), 1135–1156. https://doi.org/10.28991/cej-0309163.

    Article  Google Scholar 

  11. Lee, J.-H. (2009). Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sensors and Actuators B, 140, 319–336. https://doi.org/10.1016/j.snb.2009.04.026.

    Article  Google Scholar 

  12. Khaldi, S., & Dibi, Z. (2017). Neural network modeling of smart nanostructure sensor for electronic nose application. In Proceedings of the 6th international conference on systems and control (ICSC), University of Batna 2, Batna, Algeria, May 7–9, 2017. https://doi.org/10.1109/icosc.2017.7958690.

  13. Huang, J., & Wan, Q. (2009). Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors, 9, 9903–9924. https://doi.org/10.3390/s91209903.

    Article  Google Scholar 

  14. Liu, L., Guo, C., Li, S., Wang, L., Dong, Q., & Li, W. (2010). Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sensors and Actuators B, 150, 806–810. https://doi.org/10.1016/j.snb.2010.07.022.

    Article  Google Scholar 

  15. Liu, L., Li, S., Zhuang, J., Wang, L., Zhang, J., Li, H., et al. (2011). Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sensors and Actuators B, 155, 782–788. https://doi.org/10.1016/j.snb.2011.01.047.

    Article  Google Scholar 

  16. Wang, X., Zhao, M., Liu, F., Jia, J., Li, X., & Cao, L. (2013). C2H2 gas sensor based on Ni-doped ZnO electrospun nanofibers. Ceramics International, 39, 2883–2887. https://doi.org/10.1016/j.ceramint.2012.09.062.

    Article  Google Scholar 

  17. Prasad, A. K., Amirthapandian, S., Dharaa, S., Dasha, S., Muralib, N., & Tyagi, A. K. (2014). Novel single phase vanadium dioxide nanostructured films for methane sensing near room temperature. Sensors and Actuators B, 191, 252–256. https://doi.org/10.1016/j.snb.2013.09.102.

    Article  Google Scholar 

  18. Li, C., Lv, M., Zuo, J., & Huang, X. (2015). SnO2 highly sensitive CO gas sensor based on quasi-molecular imprinting mechanism design. Sensors, 15, 3789–3800. https://doi.org/10.3390/s150203789.

    Article  Google Scholar 

  19. Gao, L., Cheng, Z., Xiang, Q., Zhang, Y., & Xu, J. (2015). Porous corundum-type In2O3 nanosheets: Synthesis and NO2 sensing properties. Sensors and Actuators B, 208, 436–443. https://doi.org/10.1016/j.snb.2014.11.053.

    Article  Google Scholar 

  20. Yamazoe, N., Fuchigami, J., Kishikawa, M., & Seiyama, T. (1979). Interactions of tin oxide surface with O2, H2O and H2. Surface Science, 86, 335–344. https://doi.org/10.1016/0039-6028(79)90411-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khaldi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaldi, S., Dibi, Z. Neural Network Technique for Electronic Nose Based on High Sensitivity Sensors Array. Sens Imaging 20, 15 (2019). https://doi.org/10.1007/s11220-019-0233-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-019-0233-3

Keywords

Navigation