Skip to main content
Log in

Spectral–Spatial Hyperspectral Image Classification via Non-local Means Filtering Feature Extraction

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Hyperspectral image (HSI) classification has been a hot topic of research in recent years. The integration of spectral and spatial context is an effective method for HSI classification. This paper proposes a classification method of HSI based on non-local means (NLM) filtering. Firstly, the classification result of HSI is obtained by adopting the support vector machines. Then, the optimization probability image of spatial structure is obtained by using the spatial context information in the first principal component or the first three principal components of HSI to optimize the initial probability map through the NLM filtering. Finally, the final classification results are calculated based on the maximum probability. Experiment results on three real hyperspectral data demonstrate that the proposed NLM filtering based classification method can improve the classification accuracy significantly. Classification results show the effectiveness and superiority of the proposed methods when compared with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kanning, M., Siegmann, B., & Jarmer, T. (2016). Regionalization of uncovered agricultural soils based on organic carbon and soil texture estimations. Remote Sensing, 8(11), 927.

    Article  Google Scholar 

  2. Chi, J., & Crawford, M. M. (2014). Spectral unmixing-based crop residue estimation using hyperspectral remote sensing data: A case study at Purdue university. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2531–2539.

    Article  Google Scholar 

  3. Clark, M. L., & Roberts, D. A. (2012). Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier. Remote Sensing, 4(6), 1820–1855.

    Article  Google Scholar 

  4. Yang, S., Qiao, Y., Yang, L., Jin, P., & Jiao, L. (2014). Hyperspectral image classification based on relaxed clustering assumption and spatial laplace regularizer. IEEE Geoscience and Remote Sensing Letters, 11(5), 901–905.

    Article  Google Scholar 

  5. Ma, L., Crawford, M. M., & Tian, J. (2010). Local manifold learning-based-nearest-neighbor for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 4099–4109.

    Google Scholar 

  6. Goel, P. K., Prasher, S. O., Patel, R. M., Landry, J. A., Bonnell, R. B., & Viau, A. A. (2003). Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture, 39(2), 67–93.

    Article  Google Scholar 

  7. Chen, C., & Ho, P. G. P. (2008). Statistical pattern recognition in remote sensing. Pattern recognition, 41(9), 2731–2741.

    Article  Google Scholar 

  8. Bali, N., & Mohammad-Djafari, A. (2008). Bayesian approach with hidden Markov modeling and mean field approximation for hyperspectral data analysis. IEEE Transactions on Image Processing, 17(2), 217–225.

    Article  MathSciNet  Google Scholar 

  9. Yang, H. (1999). A back-propagation neural network for mineralogical mapping from AVIRIS data. International Journal of Remote Sensing, 20(1), 97–110.

    Article  Google Scholar 

  10. Fauvel, M., Benediktsson, J. A., Chanussot, J., & Sveinsson, J. R. (2008). Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 46(11), 3804–3814.

    Article  Google Scholar 

  11. Heikkinen, V., Tokola, T., Parkkinen, J., Korpela, I., & Jaaskelainen, T. (2010). Simulated multispectral imagery for tree species classification using support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1355–1364.

    Article  Google Scholar 

  12. Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.

    Article  Google Scholar 

  13. HUGES

  14. Prasad, S., & Bruce, L. M. (2008). Limitations of principal components analysis for hyperspectral target recognition. IEEE Geoscience and Remote Sensing Letters, 5(4), 625–629.

    Article  Google Scholar 

  15. Villa, A., Benediktsson, J. A., Chanussot, J., & Jutten, C. (2011). Hyperspectral image classification with independent component discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing, 49(12), 4865–4876.

    Article  Google Scholar 

  16. Falco, N., Benediktsson, J. A., & Bruzzone, L. (2014). A study on the effectiveness of different independent component analysis algorithms for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2183–2199.

    Article  Google Scholar 

  17. Benediktsson, J. A., Pesaresi, M., & Amason, K. (2003). Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1940–1949.

    Article  Google Scholar 

  18. Benediktsson, J. A., Palmason, J. A., & Sveinsson, J. R. (2005). Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 480–491.

    Article  Google Scholar 

  19. Falco, N., Benediktsson, J. A., & Bruzzone, L. (2015). Spectral and spatial classification of hyperspectral images based on ICA and reduced morphological attribute profiles. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 6223–6240.

    Article  Google Scholar 

  20. Erturk, A., Gullu, M. K., & Erturk, S. (2013). Hyperspectral image classification using empirical mode decomposition with spectral gradient enhancement. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2787–2798.

    Article  Google Scholar 

  21. Demir, B., & Bruzzone, L. (2016). Histogram based attribute profiles for classification of very high resolution remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2096–2107.

    Article  Google Scholar 

  22. Tarabalka, Y., Fauvel, M., Chanussot, J., & Benediktsson, J. A. (2010). SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 7(4), 736–740.

    Article  Google Scholar 

  23. Zhang, B., Li, S., Jia, X., Gao, L., & Peng, M. (2011). Adaptive Markov random field approach for classification of hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 8(5), 973–977.

    Article  Google Scholar 

  24. Li, J., Huang, X., Gamba, P., Bioucas-Dias, J. M., Zhang, L., Benediktsson, J. A., et al. (2015). Multiple feature learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1592–1606.

    Article  Google Scholar 

  25. Li, J., Bioucas-Dias, J. M., & Plaza, A. (2013). SpectralCspatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Transactions on Geoscience and Remote Sensing, 51(2), 844–856.

    Article  Google Scholar 

  26. Kang, X., Li, S., & Benediktsson, J. A. (2014). Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2666–2677.

    Article  Google Scholar 

  27. Chen, Y., Nasrabadi, N. M., & Tran, T. D. (2011). Hyperspectral image classification using dictionary-based sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3973–3985.

    Article  Google Scholar 

  28. Fang, L., Li, S., Kang, X., & Benediktsson, J. A. (2014). Spectral–spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7738–7749.

    Article  Google Scholar 

  29. Lu, T., Li, S., Fang, L., Ma, Y., & Benediktsson, J. A. (2016). Spectral spatial adaptive sparse representation for hyperspectral image denoising. IEEE Transactions on Geoscience and Remote Sensing, 54(1), 373–385.

    Article  Google Scholar 

  30. Zhang, H., Li, J., Huang, Y., & Zhang, L. (2014). A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2056–2065.

    Article  Google Scholar 

  31. Liu, H., Yang, C., Pan, N., Song, E., & Green, R. (2010). Denoising 3D MR images by the enhanced non-local means filter for Rician noise. Magnetic Resonance Imaging, 28(10), 1485–1496.

    Article  Google Scholar 

  32. Coup, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., & Barillot, C. (2008). An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transactions on Medical Imaging, 27(4), 425–441.

    Article  Google Scholar 

  33. Fontes, F. P. X. D., Barroso, G. A., Coup, P., & Hellier, P. (2011). Real time ultrasound image denoising. Journal of Real-Time Image Processing, 6(1), 15–22.

    Article  Google Scholar 

  34. Rahman, M. M., Arefin, M. G., PK, M. K., & Uddin, D. M. S. (2012). Optimal nonlocal means algorithm for denoising ultrasound image. Computer Engineering and Intelligent Systems, 3(3), 56–64.

    Google Scholar 

  35. Kelm, Z. S., Blezek, D., Bartholmai, B., & Erickson, B. J. (2009). Optimizing non-local means for denoising low dose CT. In Proceedings of the IEEE ISBI (pp. 662–665).

  36. Froment, J. (2014). Parameter-free fast pixelwise non-local means denoising. Image Processing (Online), 4, 300–326.

    Article  Google Scholar 

  37. Mahmoudi, M., & Sapiro, G. (2005). Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE Signal Processing Letters, 12(12), 5839–842.

    Article  Google Scholar 

  38. Wang, J., Guo, Y., Ying, Y., Liu, Y., & Peng. Q. (2006). Fast non-local algorithm for image denoising. In Image Processing (IEEE ICIP) (pp. 1429–1432).

  39. Jia, M., Gong, M., Zhang, E., Li, Y., & Jiao, L. (2014). Hyperspectral image classification based on nonlocal means with a novel class-relativity measurement. IEEE Geoscience and Remote Sensing Letters, 11(7), 1300–1304.

    Article  Google Scholar 

  40. Buades, A., Coll, B., & Morel. J. M. (2005). A non-local algorithm for image denoising. In Image Processing (CVPR) (pp. 60–65).

  41. Zhang, W. G., & Zhang, Q. (2011). SAR image despeckling combining target detection with improved nonlocal means. Electronics Letters, 47(12), 724–725.

    Article  Google Scholar 

  42. Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2(7), 60–65.

    MATH  Google Scholar 

  43. Gonzalez, R. C., & Woods, R. E. (2001). Digital Image Processing (2nd ed.). Boston, MA: Addison-Wesley.

    Google Scholar 

  44. Farbman, Z., Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics (TOG), 27(3), 67.

    Article  Google Scholar 

  45. Gastal, E. S. L., & Oliveira, M. M. (2008). Domain transform for edge-aware image and video processing. ACM Transactions on Graphics (TOG), 30(4), 1.

    Article  Google Scholar 

  46. Marpu, P. R., Pedergnana, M., Mura, M. D., Benediktsson, J. A., & Bruzzone, L. (2013). Automatic generation of standard deviation attribute profiles for spectral spatial classification of remote sensing data. IEEE Geoscience and Remote Sensing Letters, 10(2), 293–297.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 51704115, by the Key Laboratory Open Fund Project of Hunan Province University under Grants 17K040 and 15K051, by the Hunan Provincial Natural Science Foundation under Grant 2016JJ2064, by the Fund of Education Department of Hunan Province under Grant 16C0723, and by the Science and Technology Program of Hunan Province under Grant 2016TP1021. The authors would like to thank the Dr. S. Li and the reviewers for their insightful comments and suggestions which have greatly improved this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Tu or Xiaofei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, B., Zhang, X., Wang, J. et al. Spectral–Spatial Hyperspectral Image Classification via Non-local Means Filtering Feature Extraction. Sens Imaging 19, 11 (2018). https://doi.org/10.1007/s11220-018-0196-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-018-0196-9

Keywords

Navigation