Skip to main content
Log in

SAR Image Despeckling Based on a Mixture of Gaussian Distributions with Local Parameters and Multiscale Edge Detection in Lapped Transform Domain

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

A new Lapped transform domain SAR image despeckling algorithm using a two-state Gaussian mixture probability density function that uses local parameters for the mixture model, is proposed. The use of lapped orthogonal transform (LOT) is motivated by its low computational complexity and robustness to oversmoothing. It is shown that the dyadic rearranged LOT coefficients of logarithmically transformed SAR images can be well approximated using two-state Gaussian mixture distribution compared to Laplacian, Gamma, generalized Gaussian and Cauchy distributions, based on the Kolmogorov–Smirnov (KS) goodness of fit test. The LOT coefficients of speckle noise are modeled using zero mean Gaussian distributions. A maximum a posteriori (MAP) estimator within Bayesian framework is developed using this proposed prior distribution and is used to restore the noisy LOT coefficients. The parameters of mixture distribution are estimated using the expectation-maximization algorithm. This paper presents a new technique to identify LOT modulus maxima which allows us to classify LOT coefficients into the edge and non edge coefficients. The classified edge coefficients are kept unmodified by the proposed algorithm whereas the noise-free estimates of non-edge coefficients are obtained using Bayesian MAP estimator developed using two state Gaussian mixture distribution with local parameters. Finally the proposed technique is combined with the cycle spinning scheme to further improve the despeckling performance. Experimental results show that the proposed method very efficiently reduces speckle in homogeneous regions while preserving more edge structures compared to some recent well known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee, J. (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions Pattern Analysis Machine Intelligence, PAMI–2(2), 165–168.

    Article  Google Scholar 

  2. Frost, K. S. V., Stiles, J., & Holtzman, J. (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions Pattern Analysis Machine Intelligence, PAMI–4(2), 157–166.

    Article  Google Scholar 

  3. Kuan, T. S. D., Sawchuk, A., & Chavel, P. (1987). Adaptive restoration of images with speckle. IEEE Transactions Acoustics, Speech, Signal Processing, ASSP–35(3), 373–383.

    Article  Google Scholar 

  4. Baraldi, A., & Parmigiani, F. (1995). A refined gamma map sar speckle filter with improved geometrical adaptivity. IEEE Transactions on Geoscience and Remote Sensing, 33, 1245–1257.

    Article  Google Scholar 

  5. Yu, Y., & Acton, S. T. (2002). Speckle reducing anisotropic diffusion. IEEE Transaction on Image Processing, 11(11), 1260–1270.

    Article  MathSciNet  Google Scholar 

  6. Zhang, W. G., Zhang, Q., & Yang, C. S. (2011) Improved bilateral filtering for sar image despeckling. IEE Electronics Letters, 47(4).

  7. Deledalle, C. A., Denis, L., & Tupin, F. (2009). Iter. weighted max. likelihod denoising with probabilistic patch-based weights. IEEE Transaction on Image Processing, 18(12), 1–12.

    Article  MathSciNet  Google Scholar 

  8. Achim, A., Tsakalides, P., & Bezarianos, A. (2003). Sar image denoising via bayesian wavelet shrinkage based on heavy tail modeling. IEEE Transactions on Geoscience Remote Sensing, 41(8), 1773–1784.

    Article  Google Scholar 

  9. Bhuiyan, M. I. H., Ahmad, M. O., & Swamy, M. N. S. (2007). Spatially adaptive wavelet-based method using the cauchy prior for denoising the sar images. IEEE Transactions on Circuits and Systems for Video Technology, 17(4), 500–507.

    Article  Google Scholar 

  10. Amirmazlaghani, M., & Amindavar, H. (2009). A novel wavelet domain statistical approach for denoising SAR images. In International conference on image processing (ICIP), pp. 3861–3864.

  11. Jain, A. K. (1989). Fundamentals of digital image processing. New Jersey: Prentice Hall.

    MATH  Google Scholar 

  12. Guo, H., Odegard, J. E., Lang, M., Gopinath, R. A., Selesnick, I. W., & Burrus, C. S. (1994). Wavelet based speckle reduction with application to SAR based ATD/R. In International conference on image processing (ICIP), pp. 1–5.

  13. Zeng, Z., & Cumming, I. (1998). Bayesian speckle noise reduction using the discrete wavelet transform. In IGARSS, pp. 7–9.

  14. Argenti, F., & Alparone, L. (2002). Speckle removal from sar images in the undecimated wavelet domain. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2363–2374.

    Article  Google Scholar 

  15. Argenti, F., Bianchi, T., & Alparone, L. (2006). Multiresolution map despeckling of sar images based on locally adaptive generalized gaussian pdf modeling. IEEE Transactions on Image Processing, 15(11), 3385–3399.

    Article  Google Scholar 

  16. Argenti, F., Bianchi, T., & Alparone, L. (2012). Fast map despeckling based on laplacian-gaussian modeling of wavelet coefficients. IEEE Geoscience and Remote Sensing Letters, 9(1), 13–17.

    Article  Google Scholar 

  17. Parrilli, S., Poderico, M., Angelino, C. V., & Verdoliva, L. (2012). A nonlocal sar image denoising algorithm based on llmmse wavelet shrinkage. IEEE Transactions on Geoscience and Remote Sensing, 50(2), 606–616.

    Article  Google Scholar 

  18. Malvar, H. S. (1989). The lot: Transform coding without blocking effects. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(4), 553–559.

    Article  Google Scholar 

  19. Duval, L., & Nguyen, T. Q. (2003). Lapped transform domain denoising using hidden markov trees. IEEE ICIP, 1, 125–128.

    Google Scholar 

  20. Duval, L., & Nguyen, T. Q. (2004). Hidden markov tree image denoising with redundant lapped transforms. In IEEE international conference on acoustics, speech and signal processing, 3, pp. 193–196.

  21. Nath, V. K., & Mahanta, A. (2011). Image denoising based on laplace distribution with local parameters in lapped transform domain. In International conference on signal processing and multimedia applications, Seville, Spain.

  22. Hazarika, D., & Bhuyan, M. (2013). Despeckling sar images in the lapped transform domain. In National conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG), pp. 1–5.

  23. Hazarika, D., Nath, V. K., & Bhuyan, M. (2015). Lapped transform domain sar image despeckling using neighboring coefficients. In International conference on electrical, electronics, signals, communication and optimization (EESCO), pp. 1–6.

  24. Hazarika, D., Nath, V. K., & Bhuyan, M. (2015). A lapped transform domain enhanced lee filter with edge detection for speckle noise reduction in sar images. In IEEE international conference on recent trends in information systems (ReTIS), pp. 243–248.

  25. Hazarika, D., Nath, V. K., & Bhuyan, M. (2015). Sar image despeckling based on lapped transform domain dual local wiener filtering framework. International Journal of Computer Science, 42(4), 378–388.

    Google Scholar 

  26. Oliver, C., & Quegan, S. (2004). Understanding Synthetic Aperture Radar Images. Raleigh: SciTech.

    Google Scholar 

  27. Xie, H., Pierce, L. E., & Ulaby, F. T. (2002). Statis. properties of logarithmically transformed speckle. IEEE Transactions on Geoscience and Remote Sensing, 40(3), 721–727.

    Article  Google Scholar 

  28. Malvar, H. S. (2000). Fast progressive image coding without wavelets. In Data compression conference, pp. 243–252.

  29. Sandia National Laboratories. [Online]. http://www.sandia.gov/RADAR/imagery.

  30. Rohatgi, V. K., & Saleh, A. K. E. (2001). An Introduction to Probability and Statistics. New York: Wiley.

    MATH  Google Scholar 

  31. Nath, V. K., & Hazarika, D. (2012). Comparison of generalized gaussian and cauchy distributions in modeling of dyadic rearranged 2d dct coefficients. In IEEE national conference on emerging trends and applications in computer science, pp. 89–92.

  32. Nath, V. K. (2011). Statistical modeling of lapped transform coefficients and its applications. Ph.D. dissertation, Indian Institute of Technology Guwahati (IITG), Department of Electronics and Electrical Engineering.

  33. NASA/Jet Propulsion Laboratory. [Online]. http://www.airsar.jpl.nasa.gov/.

  34. Amirmazlaghani, M., & Amindavar, H. (2010). Two novel bayesian multiscale approaches for speckle suppression in sar images. IEEE Transactions on Geoscience and Remote Sensing, 48(7), 2980–2993.

    Article  Google Scholar 

  35. Li, H.-C., Hong, W., Wu, Y. R., & Fan, P. Z. (2013). Bayesian wavelet shrinkage with heterogeneity-adaptive threshold for sar image despeckling based on generalized gamma distribution, IEEE Transactions on Geoscience and Remote Sensing, 51(4), 2388–2402.

    Article  Google Scholar 

  36. Michak, M. K., Kozintsev, I., & Ramchandran, K. (1999). Low complexity image denoising based on statistical modelling of wavelet coefficient. IEEE Signal Processing Letters, 6(12), 300–303.

    Article  Google Scholar 

  37. Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 3(81), 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  38. Dai, M., Peng, C., Chan, A. K., & Loguinov, D. (2004). Bayesian wavelet shrinkage with edge detection for sar image despeckling. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1642–1648.

    Article  Google Scholar 

  39. Bhuiyan, M. I. H., Ahmad, M., & Swamy, M. S. (2005). A new wavelet-based method for despeckling sar images. In IEEE-NEWCAS conference, pp. 345–348.

  40. Bianchi, T., Argenti, F., & Alparone, L. (2008). Segmentation-based map despeckling of sar images in the undecimated wavelet domain. IEEE Transactions on Geoscience and Remote Sensing, 46(9), 2728–2742.

    Article  Google Scholar 

  41. Hou, B., Zhang, X., Bu, X., & Feng, H. (2012). Sar image despeckling based on nonsubsampled shearlet transform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(3), 809–823.

    Article  Google Scholar 

  42. Mallat, S., & Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7), 710–732.

    Article  Google Scholar 

  43. Mallat, S., & Hwang, W. L. (1992). Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 38(2), 617–643.

    Article  MathSciNet  MATH  Google Scholar 

  44. Coifman, R. R., & Donoho, D. L. (1995). Translation Invariant Denoising’ in ’Wavelet and Statistics. Berlin: Springer.

    MATH  Google Scholar 

  45. Fan, G., & Xia, X. G. (2001). Image denoising using local contexual hidden markov model in the wavelet domain. IEEE Signal Processing Letters, 8(5), 125–128.

    Article  MathSciNet  Google Scholar 

  46. Bhuiyan, M. I. H., Ahmad, M. O., & Swamy, M. N. S. (2008). Wavelet-based image denoising with the normal inverse gaussian prior and linear mmse estimator. IET Image Processing, 2(4), 203–217.

    Article  Google Scholar 

  47. The USC-SIPI Image Database, University of Southern California, Los Angeles. [Online]. http://www.sipi.usc.edu/services/database/.

  48. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image processing, 13(4), 600–612.

    Article  Google Scholar 

  49. [Online]. http://www.ece.uwaterloo.ca/z70wang/research/ssim

  50. Gleich, D., & Datcu, M. (2009). Wavelet-based sar image despeckling and information extraction, using particle filter. IEEE Transactions on Image Processing, 18(10), 2167–2184.

    Article  MathSciNet  Google Scholar 

  51. Gao, Q., Lu, Y., Sun, D., Sun, Z.-L., & Zhang, D. (2013). Directionlet based de-noising of sar images using a cauchy model. Signal Processing, 93, 1056–1063.

    Article  Google Scholar 

  52. Lu, Y., Gao, Q., Sun, D., & Zhang, D. (2014). Directionlet-based method using the gaussian mixture prior to sar image despeckling. International Journal of Remote Sensing, 35(3), 1143–1161.

    Article  Google Scholar 

  53. German Aerospace Center. [Online]. http://www.dlr.de/eo/en/DesktopDefault.aspx/tabid-6695/10983-read-10126/gallery-1/gallery-read-Image.1.3751/.

  54. Airbus Defence and Space. [Online]. http://www.geo-airbusds.com/satellite-image-gallery/.

  55. Foucher, S., Boucher, J. M., & Benie, G. B. (2000). Maximum likelihood estimation of the number of looks in sar images. In International conference on microwaves, radar wireless communications, 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Hazarika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, D., Nath, V.K. & Bhuyan, M. SAR Image Despeckling Based on a Mixture of Gaussian Distributions with Local Parameters and Multiscale Edge Detection in Lapped Transform Domain. Sens Imaging 17, 15 (2016). https://doi.org/10.1007/s11220-016-0141-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-016-0141-8

Keywords

Navigation