Skip to main content
Log in

Tracing the Origins of the Ice Giants Through Noble Gas Isotopic Composition

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The current composition of giant planet atmospheres provides information on how such planets formed, and on the origin of the solid building blocks that contributed to their formation. Noble gas abundances and their isotope ratios are among the most valuable pieces of evidence for tracing the origin of the materials from which the giant planets formed. In this review we first outline the current state of knowledge for heavy element abundances in the giant planets and explain what is currently understood about the reservoirs of icy building blocks that could have contributed to the formation of the Ice Giants. We then outline how noble gas isotope ratios have provided details on the original sources of noble gases in various materials throughout the solar system. We follow this with a discussion on how noble gases are trapped in ice and rock that later became the building blocks for the giant planets and how the heavy element abundances could have been locally enriched in the protosolar nebula. We then provide a review of the current state of knowledge of noble gas abundances and isotope ratios in various solar system reservoirs, and discuss measurements needed to understand the origin of the ice giants. Finally, we outline how formation and interior evolution will influence the noble gas abundances and isotope ratios observed in the ice giants today. Measurements that a future atmospheric probe will need to make include (1) the 3He/4He isotope ratio to help constrain the protosolar D/H and 3He/4He; (2) the 20Ne/22Ne and 21Ne/22Ne to separate primordial noble gas reservoirs similar to the approach used in studying meteorites; (3) the Kr/Ar and Xe/Ar to determine if the building blocks were Jupiter-like or similar to 67P/C-G and Chondrites; (4) the krypton isotope ratios for the first giant planet observations of these isotopes; and (5) the xenon isotopes for comparison with the wide range of values represented by solar system reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

67P/C-G:

67P/Churyumov-Gerasimenko

ACTZ:

amorphous-to-crystalline transition zone

AGB:

Asymptotic Giant Branch

BB:

Building Blocks

BB1:

Building blocks that form the core of a giant planet during core accretion

BB2:

Building blocks that are accreted during stages two and three of core accretion

BB3:

Impactors that add to the heavy elements in the envelope after a giant planet has formed

GPMS:

Galileo Probe Mass Spectrometer

HL:

H for heavy, r-process isotopes, L for light, p-process isotopes

IDP:

Interplanetary Dust Particles

ISM:

Interstellar Medium

PSN:

Protosolar Nebula

SiC:

Silicon Carbide

SW:

Solar wind

References

  • F.C. Adams, D. Hollenbach, G. Laughlin, U. Gorti, Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates. Astrophys. J. 611(1), 360 (2004)

    ADS  Google Scholar 

  • L. Alaerts, R.S. Lewis, E. Anders, Isotopic anomalies of noble gases in meteorites and their origins—III. LL-chondrites. Geochim. Cosmochim. Acta 43(9), 1399–1415 (1979a)

    ADS  Google Scholar 

  • L. Alaerts, R.S. Lewis, E. Anders, Isotopic anomalies of noble gases in meteorites and their origins—IV. C3 (Ornans) carbonaceous chondrites. Geochim. Cosmochim. Acta 43(9), 1421–1432 (1979b)

    ADS  Google Scholar 

  • Y. Alibert, C. Mordasini, W. Benz, C. Winisdoerffer, Models of giant planet formation with migration and disc evolution. Astron. Astrophys. 434(1), 343–353 (2005)

    ADS  Google Scholar 

  • S.K. Atreya, A. Crida, T. Guillot, J.I. Lunine, N. Madhusudhan, O. Mousis, The origin and evolution of saturn, with exoplanet perspective, in Saturn in the 21st Century, ed. by K.H. Baines, F.M. Flasar, N. Krupp, T. Stallard (Cambridge University Press, Cambridge, 2019), pp. 5–43. https://doi.org/10.1017/9781316227220.002

    Chapter  Google Scholar 

  • G. Avice, B. Marty, R. Burgess, The origin and degassing history of the Earth’s atmosphere revealed by Archean xenon. Nat. Commun. 8, 15455 (2017). https://doi.org/10.1038/ncomms15455

    Article  ADS  Google Scholar 

  • A. Bar-Nun, G. Notesco, T. Owen, Trapping of N2, CO and Ar in amorphous ice - application to comets. Icarus 190, 655 (2007)

    ADS  Google Scholar 

  • A. Bieler et al., Abundant molecular oxygen in the coma of comet 67P/C-G/Churyumov–Gerasimenko. Nature 526, 678–681 (2015). https://doi.org/10.1038/nature15707

    Article  ADS  Google Scholar 

  • B. Bitsch, A. Morbidelli, A. Johansen, E. Lega, M. Lambrechts, A. Crida, Pebble isolation mass — scaling law and implications for the formation of super-Earths and gas giants. Astron. Astrophys. 612, A30 (2018)

    ADS  Google Scholar 

  • D.C. Black, On the origins of trapped helium, neon and argon isotopic variations in meteorites—I. Gas-rich meteorites, lunar soil and breccia. Geochim. Cosmochim. Acta 36(3), 347–375 (1972a)

    ADS  Google Scholar 

  • D.C. Black, On the origins of trapped helium, neon and argon isotopic variations in meteorites—II. Carbonaceous meteorites. Geochim. Cosmochim. Acta 36(3), 377–394 (1972b)

    ADS  Google Scholar 

  • D. Bockelée-Morvan, U. Calmonte, S. Charnley, J. Duprat, C. Engrand, A. Gicquel, M. Hässig, E. Jehin, H. Kawakita, B. Marty, S. Milam, A. Morse, P. Rousselot, S. Sheridan, E. Wirström, Cometary isotopic measurements. Space Sci. Rev. 197, 47 (2015). https://doi.org/10.1007/s11214-015-0156-9

    Article  ADS  Google Scholar 

  • P. Bodenheimer, J.B. Pollack, Calculations of the accretion and evolution of giant planets: the effects of solid cores. Icarus 67(3), 391–408 (1986)

    ADS  Google Scholar 

  • A.C. Boley, R. Helled, M.J. Payne, The heavy-element composition of disk instability planets can range from sub- to super-nebular. Astrophys. J. 735(1), 30 (2011)

    ADS  Google Scholar 

  • A.P. Boss, G.W. Wetherill, N. Haghighipour, Rapid formation of ice giant planets. Icarus 156(1), 291–295 (2002)

    ADS  Google Scholar 

  • F.H. Briggs, P.D. Sackett, Radio observations of Saturn as a probe of its atmosphere and cloud structure. Icarus 80(1), 77–103 (1989)

    ADS  Google Scholar 

  • H. Busemann, H. Baur, R. Wieler, Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35(5), 949–973 (2000)

    ADS  Google Scholar 

  • P.G. Conrad et al., In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth Planet. Sci. Lett. 454, 1–9 (2016). https://doi.org/10.1016/j.epsl.2016.08.028

    Article  ADS  Google Scholar 

  • B.J. Conrath, D. Gautier, Saturn helium abundance: a reanalysis of Voyager measurements. Icarus 144(1), 124–134 (2000)

    ADS  Google Scholar 

  • B. Conrath, D. Gautier, R. Hanel, G. Lindal, A. Marten, The helium abundance of Uranus from Voyager measurements. J. Geophys. Res. Space Phys. 92(A13), 15003–15010 (1987)

    ADS  Google Scholar 

  • B.J. Conrath, D. Gautier, G.F. Lindal, R.E. Samuelson, W.A. Shaffer, The helium abundance of Neptune from Voyager measurements. J. Geophys. Res. Space Phys. 96(S01), 18907–18919 (1991)

    ADS  Google Scholar 

  • I. de Pater, Selective enrichment of volatiles confirmed. Nat. Astron. 2(5), 364 (2018)

    ADS  Google Scholar 

  • I. De Pater, J.J. Lissauer, Planetary Sciences (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  • I. de Pater, P.N. Romani, S.K. Atreya, Possible microwave absorption by H2S gas in Uranus’ and Neptune’s atmospheres. Icarus 91(2), 220–233 (1991)

    ADS  Google Scholar 

  • P. Eberhardt, A neon-E-rich phase in the Orgueil carbonaceous chondrite. Earth Planet. Sci. Lett. 24(2), 182–187 (1974)

    ADS  Google Scholar 

  • H. Feuchtgruber, E. Lellouch, G. Orton, T. de Graauw, B. Vandenbussche, B. Swinyard, R. Moreno, C. Jarchow, F. Billebaud, T. Cavalie, S. Sidher, P. Hartogh, The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations. Astron. Astrophys. 551, A126 (2013)

    Google Scholar 

  • L.N. Fletcher, G.S. Orton, N.A. Teanby, P.G.J. Irwin, Phosphine on Jupiter and Saturn from Cassini/CIRS. Icarus 202(2), 543–564 (2009)

    ADS  Google Scholar 

  • L.N. Fletcher et al., Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 μm nightside spectroscopy. Icarus 214(2), 510–533 (2011)

    ADS  Google Scholar 

  • D. Gautier, F. Hersant, Formation and composition of planetesimals. Space Sci. Rev. 116, 25 (2005)

    ADS  Google Scholar 

  • D. Gautier, F. Hersant, O. Mousis, J.I. Lunine, Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. Astrophys. J. 550, L227 (2001)

    ADS  Google Scholar 

  • J. Geiss, Primordial abundances of hydrogen and helium isotopes, in Origin and Evolution of the Elements (1993), pp. 89–106

    Google Scholar 

  • J. Geiss, G. Gloeckler, Abundances of hydrogen and helium isotopes in the protosolar cloud. Proc. Int. Astron. Union 5(S268), 71–79 (2009)

    Google Scholar 

  • J. Geiss, H. Reeves, Cosmic and solar system abundances of deuterium and helium-3. Astron. Astrophys. 18, 126 (1972)

    ADS  Google Scholar 

  • J.D. Gilmour, “Planetary” noble gas components and the nucleosynthetic history of solar system material. Geochim. Cosmochim. Acta 74, 380–393 (2010). https://doi.org/10.1016/j.gca.2009.09.015

    Article  ADS  Google Scholar 

  • T. Guillot, Interiors of giant planets inside and outside the solar system. Science 286(5437), 72–77 (1999)

    ADS  Google Scholar 

  • T. Guillot, B. Gladman, Late planetesimal delivery and the composition of giant planets (invited review), in Disks, Planetesimals, and Planets, vol. 219 (2000), p. 475

    Google Scholar 

  • T. Guillot, D.J. Stevenson, W.B. Hubbard, D. Saumon, The interior of Jupiter, in Jupiter: The Planet, Satellites and Magnetosphere (2004), pp. 35–57

    Google Scholar 

  • J.M. Hahn, R. Malhotra, Orbital evolution of planets embedded in a planetesimal disk. Astron. J. 117(6), 3041 (1999)

    ADS  Google Scholar 

  • R. Helled, The change in Jupiter’s moment of inertia due to core erosion and planetary contraction. Astrophys. J. 748, L16 (2012)

    ADS  Google Scholar 

  • R. Helled, The Interiors of Jupiter and Saturn. Oxford Research Encyclopedia of Planetary Science (2019). Retrieved 6 Jan. 2020 from https://oxfordre.com/planetaryscience/view/10.1093/acrefore/9780190647926.001.0001/acrefore-9780190647926-e-175

    Google Scholar 

  • R. Helled, D. Stevenson, The fuzziness of giant planets’ cores. Astrophys. J. Lett. 840(1), L4 (2017)

    ADS  Google Scholar 

  • G.R. Huss, R.S. Lewis, S. Hemkin, The “normal planetary” noble gas component in primitive chondrites: compositions, carrier, and metamorphic history. Geochim. Cosmochim. Acta 60(17), 3311–3340 (1996)

    ADS  Google Scholar 

  • G.R. Huss, A.P. Meshik, J.B. Smith, C.M. Hohenberg, Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula. Geochim. Cosmochim. Acta 67, 4823–4848 (2003). https://doi.org/10.1016/j.gca.2003.07.019

    Article  ADS  Google Scholar 

  • P.G.J. Irwin et al., Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere. Nat. Astron. 2, 420 (2018)

    ADS  Google Scholar 

  • P.G.J. Irwin et al., Probable detection of hydrogen sulphide H2S in Neptune’s atmosphere. Icarus 321, 550 (2019)

    ADS  Google Scholar 

  • C. Kendall, E.A. Caldwell, Fundamentals of isotope geochemistry, in Isotope Tracers in Catchment Hydrology (Elsevier, Amsterdam, 1998), pp. 51–86

    Google Scholar 

  • J. Klinger, Influence of a phase transition of ice on the heat and mass balance of comets. Science 209, 271 (1980)

    ADS  Google Scholar 

  • T.T. Koskinen, S. Guerlet, Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations. Icarus 307, 161–171 (2018)

    ADS  Google Scholar 

  • A. Kouchi, T. Yamamoto, T. Kozasa, T. Kuroda, J.M. Greenberg, Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices. Astron. Astrophys. 290, 1009–1018 (1994)

    ADS  Google Scholar 

  • M. Kuga, B. Marty, Y. Marrocchi, L. Tissandier, Synthesis of refractory organic matter in the ionized gas phase of the solar nebula. Proc. Natl. Acad. Sci. USA 112, 7129–7134 (2015). https://doi.org/10.1073/pnas.1502796112

    Article  ADS  Google Scholar 

  • M. Kuga, G. Cernogora, Y. Marrocchi, L. Tissandier, B. Marty, Processes of noble gas elemental and isotopic fractionations in plasma-produced organic solids: cosmochemical implications. Geochim. Cosmochim. Acta 217, 219–230 (2017)

    ADS  Google Scholar 

  • L. Le Roy et al., Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astron. Astrophys. 583, A1 (2015)

    Google Scholar 

  • E. Lellouch, B. Bézard, T. Fouchet, H. Feuchtgruber, T. Encrenaz, T. de Graauw, The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron. Astrophys. 370(2), 610–622 (2001)

    ADS  Google Scholar 

  • R.S. Lewis, S. Amari, E. Anders, Interstellar grains in meteorites: II. SiC and its noble gases. Geochim. Cosmochim. Acta 58, 471–494 (1994). https://doi.org/10.1016/0016-7037(94)90478-2

    Article  ADS  Google Scholar 

  • J.J. Lissauer, Planet formation. Annu. Rev. Astron. Astrophys. 31(1), 129–172 (1993)

    ADS  Google Scholar 

  • K. Lodders, Jupiter formed with more tar than ice. Astrophys. J. 611(1), 587 (2004)

    ADS  Google Scholar 

  • K. Lodders, H. Palme, H.P. Gail, Abundances of the elements in the solar system. Astron. Astrophys. VI/4B, 560–630 (2009)

    Google Scholar 

  • A. Luspay-Kuti et al., The presence of clathrates in comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2, 1501781 (2016)

    ADS  Google Scholar 

  • P.R. Mahaffy, T.M. Donahue, S.K. Atreya, T.C. Owen, H.B. Niemann, Galileo probe measurements of D/H and 3He/4He in Jupiter’s atmosphere. Space Sci. Rev. 84, 251–263 (1998)

    ADS  Google Scholar 

  • P.R. Mahaffy, H.B. Niemann, A. Alpert, S.K. Atryea, D. Demick, T.M. Donahue, D.N. Harpold, T.C. Owen, Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo probe mass spectrometer. J. Geophys. Res., Planets 105(E6), 15061–15071 (2000)

    ADS  Google Scholar 

  • K.E. Mandt et al., Isotopic evolution of the major constituents of Titan’s atmosphere based on Cassini data. Planet. Space Sci. 57(14–15), 1917–1930 (2009)

    ADS  Google Scholar 

  • K.E. Mandt et al., The 12C/13C ratio on Titan from Cassini INMS measurements and implications for the evolution of methane. Astrophys. J. 749(2), 160 (2012)

    ADS  Google Scholar 

  • K.E. Mandt, O. Mousis, J. Lunine, D. Gautier, Protosolar ammonia as the unique source of Titan’s nitrogen. Astrophys. J. Lett. 788(2), L24 (2014)

    ADS  Google Scholar 

  • K.E. Mandt, O. Mousis, S. Treat, Determining the origin of the building blocks of the ice giants based on analog measurements from comets. Mon. Not. R. Astron. Soc. 491(1), 488–494 (2020)

    ADS  Google Scholar 

  • B. Marty, R.L. Palma, R.O. Pepin, L. Zimmermann, D.J. Schlutter, P.G. Burnard, A.J. Westphal, C.J. Snead, S. Bajt, R.H. Becker, J.E. Simones, Helium and neon abundances and compositions in cometary matter. Science 319(5859), 75–78 (2008)

    ADS  Google Scholar 

  • B. Marty et al., Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science 80(356), 1069–1072 (2017). https://doi.org/10.1126/science.aal3496

    Article  ADS  Google Scholar 

  • A. Meshik, C. Hohenberg, O. Pravdivtseva, D. Burnett, Heavy noble gases in solar wind delivered by Genesis mission. Geochim. Cosmochim. Acta 127, 326–347 (2014). https://doi.org/10.1016/j.gca.2013.11.030

    Article  ADS  Google Scholar 

  • H. Mizuno, Formation of the giant planets. Prog. Theor. Phys. 64(2), 544–557 (1980)

    ADS  Google Scholar 

  • R.K. Moniot, Noble-gas-rich separates from ordinary chondrites. Geochim. Cosmochim. Acta 44(2), 253–271 (1980)

    ADS  Google Scholar 

  • O. Mousis et al., Origin of volatiles in the main belt. Mon. Not. R. Astron. Soc. 383, 1269 (2008)

    ADS  Google Scholar 

  • O. Mousis et al., Determination of the minimum masses of heavy elements in the envelopes of Jupiter and Saturn. Astrophys. J. 696, 1348 (2009)

    ADS  Google Scholar 

  • O. Mousis, J.I. Lunine, N. Madhusudhan, T.V. Johnson, Nebular water depletion as the cause of Jupiter’s low oxygen abundance. Astrophys. J. 751, L7 (2012)

    ADS  Google Scholar 

  • O. Mousis et al., Scientific rationale for Saturn’s in situ exploration. Planet. Space Sci. 104, 29–47 (2014)

    ADS  Google Scholar 

  • O. Mousis et al., A protosolar nebula origin for the ices agglomerated by comet 67P/Churyumov-Gerasimenko. Astrophys. J. 819, L33 (2016)

    ADS  Google Scholar 

  • O. Mousis et al., Scientific rationale for Uranus and Neptune in situ explorations. Planet. Space Sci. 155, 12–40 (2018a)

    ADS  Google Scholar 

  • O. Mousis et al., Noble gas abundance ratios indicate the agglomeration of 67P/Churyumov-Gerasimenko from warmed-up ice. Astrophys. J. 865, L11 (2018b)

    ADS  Google Scholar 

  • O. Mousis, T. Ronnet, J.I. Lunine, Jupiter’s formation in the vicinity of the amorphous ice snowline. Astrophys. J. 875, 9 (2019)

    ADS  Google Scholar 

  • O. Mousis, A. Aguichine, D.H. Atkinson, S.K. Atreya, T. Cavalie, J.I. Lunine, K.E. Mandt, T. Ronnet, Key atmospheric signatures for identifying the source reservoirs of volatiles in Uranus and Neptune. Space Sci. Rev. 216, 77 (2020)

    ADS  Google Scholar 

  • G.S. Orton et al., Characteristics of the Galileo probe entry site from Earth-based remote sensing observations. J. Geophys. Res., Planets 103(E10), 22791–22814 (1998)

    ADS  Google Scholar 

  • U. Ott, Noble gases in meteorites - trapped components, in Noble Gases in Geochemistry and Cosmochemistry (2002), pp. 71–100

    Google Scholar 

  • U. Ott, Planetary and pre-solar noble gases in meteorites. Geochemistry 74, 519–544 (2014). https://doi.org/10.1016/j.chemer.2014.01.003

    Article  Google Scholar 

  • U. Ott, H.P. Löhr, F. Begemann, Trapped neon in ureilites: a new component, in Isotopic Ratios in the Solar System (1985)

    Google Scholar 

  • T. Owen, T. Encrenaz, Compositional constraints on giant planet formation. Planet. Space Sci. 54(12), 1188–1196 (2006)

    ADS  Google Scholar 

  • T. Owen, K. Biemann, D.R. Rushneck, J.E. Biller, D.W. Howarth, A.L. Lafleur, The composition of the atmosphere at the surface of Mars. J. Geophys. Res. 82(28), 4635–4639 (1977)

    ADS  Google Scholar 

  • T. Owen et al., A low-temperature origin for the planetesimals that formed Jupiter. Nature 402, 269 (1999)

    ADS  Google Scholar 

  • T. Owen, P.R. Mahaffy, H.B. Niemann, S. Atreya, M. Wong, Protosolar nitrogen. Astrophys. J. 553(1), L77–L79 (2001)

    ADS  Google Scholar 

  • M. Ozima, F.A. Podosek, Noble Gas Geochemistry (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  • R.O. Pepin, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92(1), 2–79 (1991)

    ADS  Google Scholar 

  • R.O. Pepin, Atmospheres on the terrestrial planets: clues to origin and evolution. Earth Planet. Sci. Lett. 252, 1–14 (2006). https://doi.org/10.1016/j.epsl.2006.09.014

    Article  ADS  Google Scholar 

  • R.O. Pepin, R.L. Palma, R.D. Gehrz, S. Starrfield, Presolar grains from novae: evidence from neon and helium isotopes in comet dust collections. Astrophys. J. 742(2), 86 (2011)

    ADS  Google Scholar 

  • F. Perri, A.G. Cameron, Hydrodynamic instability of the solar nebula in the presence of a planetary core. Icarus 22(4), 416–425 (1974)

    ADS  Google Scholar 

  • M. Podolak, J.B. Pollack, R.T. Reynolds, Interactions of planetesimals with protoplanetary atmospheres. Icarus 73(1), 163–179 (1988)

    ADS  Google Scholar 

  • J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62 (1996)

    ADS  Google Scholar 

  • M. Rubin et al., Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science 348, 232 (2015)

    ADS  Google Scholar 

  • M. Rubin, K. Altwegg, H. Balsiger, A. Bar-nun, J. Berthelier, C. Briois, U. Calmonte, M. Combi, J. De Keyser, B. Fiethe, S.A. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, E. Kopp, A. Korth, D. Laufer, L. Le Roy, U. Mall, B. Marty, O. Mousis, Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 4(7), eaar6297 (2018)

    ADS  Google Scholar 

  • M. Rubin et al., Elemental and molecular abundances in comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 489(1), 594–607 (2019)

    ADS  Google Scholar 

  • N. Schelhaas, U. Ott, F. Begemann, Trapped noble gases in unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 54(10), 2869–2882 (1990)

    ADS  Google Scholar 

  • B. Schmitt, S. Espinasse, R.J.A. Grim, J.M. Greenberg, J. Klinger, Laboratory studies of cometary ice analogues, in Physics and Mechanics of Cometary Materials, vol. 65 (1989)

    Google Scholar 

  • D.J. Stevenson, Formation of the giant planets. Planet. Space Sci. 30(8), 755–764 (1982)

    ADS  Google Scholar 

  • D.J. Stevenson, E.E. Salpeter, The dynamics and helium distribution in hydrogen-helium fluid planets. Astrophys. J. Suppl. Ser. 35, 239–261 (1977a)

    ADS  Google Scholar 

  • D.J. Stevenson, E.E. Salpeter, The phase diagram and transport properties for hydrogen-helium fluid planets. Astrophys. J. Suppl. Ser. 35, 221–237 (1977b)

    ADS  Google Scholar 

  • T.D. Swindle, Martian noble gases, in Noble Gases in Geochemistry and Cosmochemistry, ed. by D. Porcelli, C.J. Ballentine, R. Wieler (Geochem. Soc. Mineral. Soc. America, 2002), pp. 171–190

    Google Scholar 

  • A. Vazan, R. Helled, A. Kovetz, M. Podolak, Convection and mixing in giant planet evolution. Astrophys. J. 803(1), 32 (2015)

    ADS  Google Scholar 

  • N. Vogel, H. Baur, A. Bischoff, I. Leya, R. Wieler, Noble gas studies in CAIs from CV3 chondrites: no evidence for primordial noble gases. Meteorit. Planet. Sci. 39, 767–778 (2004)

    ADS  Google Scholar 

  • U. Von Zahn, D.M. Hunten, G. Lehmacher, Helium in Jupiter’s atmosphere: results from the Galileo probe helium interferometer experiment. J. Geophys. Res., Planets 103(E10), 22815–22829 (1998)

    ADS  Google Scholar 

  • S.M. Wahl, W.B. Hubbard, B. Militzer, T. Guillot, Y. Miguel, N. Movshovitz, Y. Kaspi, R. Helled, D. Reese, E. Galanti, S. Levin, J.E. Connerney, S.J. Bolton, Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 44, 4649–4659 (2017)

    ADS  Google Scholar 

  • G.W. Wetherill, G.R. Stewart, Accumulation of a swarm of small planetesimals. Icarus 77,(2), 330–357 (1989)

    ADS  Google Scholar 

  • R. Wieler, The solar noble gas record in lunar samples and meteorites. Space Sci. Rev. 85, 303–314 (1998)

    ADS  Google Scholar 

  • R. Wieler, E. Anders, H. Baur, R.S. Lewis, P. Signer, Noble gases in “phase Q”: closed-system etching of an Allende residue. Geochim. Cosmochim. Acta 55(6), 1709–1722 (1991)

    ADS  Google Scholar 

  • R. Wieler, E. Anders, H. Baur, R.S. Lewis, P. Signer, Characterisation of Q-gases and other noble gas components in the Murchison meteorite. Geochim. Cosmochim. Acta 56(7), 2907–2921 (1992)

    ADS  Google Scholar 

  • H.F. Wilson, B. Militzer, Sequestration of noble gases in giant planet interiors. Phys. Rev. Lett. 104(12), 121101 (2010)

    ADS  Google Scholar 

  • H.F. Wilson, B. Militzer, Solubility of water ice in metallic hydrogen: consequences for core erosion in gas giant planets. Astrophys. J. 745(1), 54 (2011)

    ADS  Google Scholar 

  • H.F. Wilson, B. Militzer, Rocky core solubility in Jupiter and giant exoplanets. Phys. Rev. Lett. 108(11), 111101 (2012)

    ADS  Google Scholar 

  • M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.B. Niemann, T.C. Owen, Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171(1), 153–170 (2004)

    ADS  Google Scholar 

  • L. Yang, F.J. Ciesla, C.M.D. Alexander, The D/H ratio of water in the solar nebula during its formation and evolution. Icarus 226(1), 256–267 (2013)

    ADS  Google Scholar 

  • X. Zeng, S. Li, I. Leya, S. Wang, T. Smith, Y. Li, P. Wang, The Kumtag 016 L5 strewn field, Xinjiang Province, China. Meteorit. Planet. Sci. 53(6), 1113–1130 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

K.E.M. acknowledges support from the Rosetta project through JPL subcontract 1585002, by NFDAP grant 80NSSC18K1233, and by RDAP grant 80NSSC19K1306. O.M. and B.M. acknowledge support from CNES. JIL acknowledges support from the Juno mission through Subcontract D99069MO from the Southwest Research Institute.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In Situ Exploration of the Ice Giants: Science and Technology

Edited by Olivier J. Mousis and David H. Atkinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandt, K.E., Mousis, O., Lunine, J. et al. Tracing the Origins of the Ice Giants Through Noble Gas Isotopic Composition. Space Sci Rev 216, 99 (2020). https://doi.org/10.1007/s11214-020-00723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00723-5

Keywords

Navigation