Skip to main content
Log in

The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The first of the two missions foreseen in the ExoMars program was successfully launched on 14th March 2016. It included the Trace Gas Orbiter and the Schiaparelli Entry descent and landing Demonstrator Module. Schiaparelli hosted the DREAMS instrument suite that was the only scientific payload designed to operate after the touchdown. DREAMS is a meteorological station with the capability of measuring the electric properties of the Martian atmosphere. It was a completely autonomous instrument, relying on its internal battery for the power supply. Even with low resources (mass, energy), DREAMS would be able to perform novel measurements on Mars (atmospheric electric field) and further our understanding of the Martian environment, including the dust cycle. DREAMS sensors were designed to operate in a very dusty environment, because the experiment was designed to operate on Mars during the dust storm season (October 2016 in Meridiani Planum). Unfortunately, the Schiaparelli module failed part of the descent and the landing and crashed onto the surface of Mars. Nevertheless, several seconds before the crash, the module central computer switched the DREAMS instrument on, and sent back housekeeping data indicating that the DREAMS sensors were performing nominally. This article describes the instrument in terms of scientific goals, design, working principle and performances, as well as the results of calibration and field tests. The spare model is mature and available to fly in a future mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • M. Álvarez, C. Hernando, J.J. Jiménez, F.J. Álvarez, I. Martín, D. Escribano, TID results of optical materials and photodiodes for SIS instruments (DREAMS project), in Proc. of IEEE Nuclear and Space Radiation Effects Conference, Paris, France (2014)

    Google Scholar 

  • M. Álvarez, J.J. Jiménez, D. Escribano, P. Manzano, I. Arruego, V. Apéstigue, M. González-Guerrero, Low dose rate TID testing of ADXL327 accelerometer for a Mars mission, in Proc. of IEEE Nuclear and Space Radiation Effects Conference, Boston, Massachusetts (2015)

    Google Scholar 

  • V. Apéstigue, I. Arruego, J. Martínez, J.J. Jiménez, J. Rivas, M. González, J. Álvarez, J. Azcue, A. Martín-Ortega, J.R. de Mingo, M.T. Álvarez, L. Bastide, A. Carretero, A. Santiago, I. Martín, B. Martín, M.A. Alcacera, J. Manzano, T. Belenger, R. López, D. Escribano, P. Manzano, J. Boland, E. Cordoba, A. Sánchez-Lavega, S. Pérez, A. Sainz López, M. Lemmon, M. Smith, C.E. Newman, J. Gómez Elvira, N. Bridges, P. Conrad, M. de la Torre Juarez, R. Urqui, J.A. Rodríguez Manfredi, Radiation and Dust Sensor for MARS2020: technical design and development status overview, in Proc. of European Planetary Science Congress, vol. 10 (2015)

    Google Scholar 

  • K.L. Aplin, Atmospheric electrification in the Solar System. Surv. Geophys. 27(1), 63–108 (2006). https://doi.org/10.1007/s10712-005-0642-9

    Article  ADS  Google Scholar 

  • I. Arruego, V. Apéstigue, J. Jiménez-Martín, J. Martínez-Oter, F.J. Álvarez-Ríos, M. González-Guerrero, J. Rivas, J. Azcue, I. Martín, D. Toledo, L. Gómez, M. Jiménez-Michavila, M. Yela, DREAMS-SIS: the Solar Irradiance Sensor on-board the ExoMars 2016 Lander. Adv. Space Res. 60, 103–120 (2017)

    Article  ADS  Google Scholar 

  • S.K. Atreya, A.-S. Wong, N.O. Renno, W.M. Farrell, G.T. Delory, D.D. Sentman, S.A. Cummer, J.R. Marshall, S.C.R. Rafkin, D.C. Catling, Oxidant enhancement in Martian dust devils and storms: implications for life and habitability. Astrobiology 6(3), 439–450 (2006)

    Article  ADS  Google Scholar 

  • J. Berthelier, R. Grard, H. Laakso, M. Parrot, ARES, atmospheric relaxation and electric field sensor, the electric field experiment on NETLANDER. Planet. Space Sci. 48, 1193–1200 (2000). https://doi.org/10.1016/S0032-0633(00)00103-3

    Article  ADS  Google Scholar 

  • T. Bertrand, A. Spiga, S. Rafkin, A. Colaitis, F. Forget, E. Millour, An intercomparison of large-eddy simulations of the Martian daytime convective boundary layer. Geosci. Model Dev. Discuss. (2016). https://doi.org/10.5194/gmd-2016-241

    Article  Google Scholar 

  • N. Bridges, P. Geissler, S. Silvestro, M. Banks, Bedform migration on Mars: current results and future plans. Aeolian Res. 9, 133–151 (2013). https://doi.org/10.1016/j.aeolia.2013.02.004

    Article  ADS  Google Scholar 

  • S. Chiodini, G. Colombatti, M. Pertile, S. Debei, Numerical study of lander effects on DREAMS scientific package measurements, in IEEE Metrology for Aerospace (MetroAeroSpace) (2014), pp. 433–438

    Google Scholar 

  • S. Chiodini, G. Colombatti, E. Friso, M. Pertile, S. Debei, Multiphysics modelling of MarsTEM shield, in 2015 IEEE Metrology for Aerospace (MetroAeroSpace) (2015), pp. 271–276

    Chapter  Google Scholar 

  • M. Chojnacki, A. Urso, L.K. Fenton, T.I. Michaels, Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars. Aeolian Res. 26 (2017)

    Article  ADS  Google Scholar 

  • G. Colombatti, S. Chiodini, E. Friso, A. Aboudan, C. Bettanini, S. Debei, F. Esposito, MarsTEM: the temperature sensor of the DREAMS package onboard Exomars2016, in 2014 IEEE Metrology for Aerospace (MetroAeroSpace) (2014), pp. 249–254

    Google Scholar 

  • G. Colombatti, S. Chiodini, E. Friso, A. Aboudan, C. Bettanini, M. Poli, S. Debei, F. Esposito, C. Molfese, P. Schipani, R. Mugnuolo, S. Pirrotta, E. Marchetti, Marstem field test in Mars analog environment, in 2015 IEEE Metrology for Aerospace (MetroAeroSpace) (2015)

    Google Scholar 

  • G. Déprez, Micro-ARES on ExoMars 2016. PhD thesis (2016, to be published)

  • F. Esposito, R. Molinaro, C.I. Popa, C. Molfese, F. Cozzolino, L. Marty, K. Taj-Eddine, G. Di Achille, G. Franzese, S. Silvestro, G.G. Ori, The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43 (2016). https://doi.org/10.1002/2016GL068463

    Article  ADS  Google Scholar 

  • W.M. Farrell, J.L. McLain, M.R. Collier, J.W. Keller, T.J. Jackson, G.T. Delory, Is the electron avalanche process in a martian dust devil self-quenching? Icarus 254, 333–337 (2015). https://doi.org/10.1016/j.icarus.2015.04.003

    Article  ADS  Google Scholar 

  • V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306(5702), 1758–1761 (2004)

    Article  ADS  Google Scholar 

  • A.-M. Harri, M. Genzer, O. Kemppinen, H. Kahnapää, J. Gomez-Elvira, J.A. Rodriguez-Manfredi, R. Haberle, J. Polkko, W. Schmidt, H. Savijärvi, J. Kauhanen, E. Atlaskin, M. Richardson, T. Siili, M. Paton, M. de La TorreJuarez, C. Newman, S. Rafkin, M.T. Lemmon, M. Mischna, S. Merikallio, H. Haukka, J. Martin-Torres, M.-P. Zorzano, V. Peinado, R. Urqui, A. Lepinette, A. Scodary, T. Mäkinen, L. Vazquez, N. Rennó (the REMS/MSL Science Team), Pressure observations by the curiosity rover—initial results. J. Geophys. Res. 119, 82–92 (2014a)

    Article  Google Scholar 

  • A.-M. Harri, M. Genzer, O. Kemppinen, J. Gomez-Elvira, R. Haberle, J. Polkko, H. Savijärvi, N. Rennó, J.A. Rodriguez-Manfredi, W. Schmidt, M. Richardson, T. Siili, M. Paton, M. de la Torre-Juarez, T. Mäkinen, C. Newman, S. Rafkin, M. Mischna, S. Merikallio, H. Haukka, J. Martin-Torres, M. Komu, M.-P. Zorzano, V. Peinado, L. Vazquez, R. Urqui, Mars Science Laboratory relative humidity observations—initial results. J. Geophys. Res. 119, 2132–2147 (2014b)

    Article  Google Scholar 

  • R.G. Harrison, E. Barth, F. Esposito, J. Merrison, F. Montmessin, K.L. Aplin, C. Borlina, J.J. Berthelier, G. Déprez, W. Farell, I.M.P. Houghton, N.O. Renno, K.A. Nicoll, S.N. Tripathi, M. Zimmerman, Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity. Space Sci. Rev. (2016). https://doi.org/10.1007/s11214-016-0241-8

    Article  Google Scholar 

  • C. Holstein-Rathlou, J. Merrison, J.J. Iversen, A.B. Jakobsen, R. Nicolajsen, P. Nørnberg, K. Rasmussen, A. Merlone, G. Lopardo, T. Hudson, D. Banfield, G. Portyankina, An environmental wind tunnel facility for testing meteorological sensor systems. J. Atmos. Ocean. Technol. 31(2), 447–457 (2014)

    Article  ADS  Google Scholar 

  • J.J. Jimenez, J.M. Oter, V. Apestigue, C. Hernando, S. Ibarmia, W. Hajdas, J. Sanchez-Paramo, M.T. Alvarez, I. Arruego, H. Guerrero, Proton monitor Las Dos Torres: first intercomparison of in-orbit results. IEEE Trans. Nucl. Sci. 59(4) (2012)

    Article  ADS  Google Scholar 

  • J.J. Jiménez, F.J. Álvarez, M. Gonzalez-Guerrero, V. Apéstigue, I. Martín, J.M. Fernández, A.A. Fernán, I. Arruego, Calibration OGSE for a multichannel radiometer for Mars atmosphere studies, in Proc. of International Conference on Space Optics, ICSO, Biarritz, France (2016)

    Google Scholar 

  • M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, M.D. Smith, Strong release of methane on Mars in northern summer 2003. Science 323(5917), 1041 (2009)

    Article  ADS  Google Scholar 

  • J. Murphy, K. Steakley, M. Balme, G. Deprez, F. Esposito, H. Kahanpää, M. Lemmon, R. Lorenz, N. Murdoch, L. Neakrase, M. Patel, P. Whelley, Field measurements of terrestrial and Martian dust devils. Space Sci. Rev. (2016). https://doi.org/10.1007/s11214-016-0283-y

    Article  Google Scholar 

  • T. Nikkanen, W. Schmidt, A.-M. Harri, M. Genzer, M. Hieta, H. Haukka, O. Kemppinen, Space qualification of an automotive microcontroller for the DREAMS-P/H pressure and humidity instrument on board the ExoMars 2016 Schiaparelli lander, EPCS2015-465 (2015)

  • P. Schipani, L. Marty, M. Mannetta, F. Esposito, C. Molfese, A. Aboudan, V. Apestigue-Palacio, I. Arruego-Rodríguez, C. Bettanini, G. Colombatti, S. Debei, M. Genzer, A.-M. Harri, E. Marchetti, F. Montmessin, R. Mugnuolo, S. Pirrotta, C. Wilson, The ExoMars DREAMS scientific data archive. Proc. SPIE 9913, 99134F (2016)

    Article  ADS  Google Scholar 

  • A. Seiff, J.E. Tillman, J.R. Murphy, J.T. Schofield, D. Crisp, J.R. Barnes, C. LaBaw, C. Mahoney, J.D. Mihalov, G.R. Wilson, R. Haberle, The atmosphere structure and meteorology instrument on the Mars Pathfinder lander. J. Geophys. Res. 102(E2), 4045–4056 (1997)

    Article  ADS  Google Scholar 

  • S. Silvestro, D.A. Vaz, L.K. Fenton, P.E. Geissler, Active aeolian processes on Mars: a regional study in Arabia and Meridiani Terrae. Geophys. Res. Lett., L20201 (2011). https://doi.org/10.1029/2011GL048955

    Article  Google Scholar 

  • S. Silvestro, D.A. Vaz, G. Di Achille, I.C. Popa, F. Esposito, Evidence for different episodes of aeolian construction and a new type of wind streak in the 2016 ESA ExoMars landing ellipse in Meridiani Planum, Mars. J. Geophys. Res., Planets 120(4), 760–774 (2015). https://doi.org/10.1002/2014JE004756

    Article  ADS  Google Scholar 

  • M.D. Smith, M.-P. Zorzano, M. Lemmon, J. Martín-Torres, T. Mendaza de Cal, Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes. Icarus 280, 234–248 (2016)

    Article  ADS  Google Scholar 

  • D. Toledo, I. Arruego, V. Apéstigue, J.J. Jiménez, L. Gómez, M. Yela, P. Rannou, J.-P. Pommereau, Measurement of dust optical depth using the solar irradiance sensor (SIS) onboard the ExoMars 2016 EDM. Planet. Space Sci. 138, 33–43 (2017)

    Article  ADS  Google Scholar 

  • M.C. Towner, M.R. Patel, T.J. Ringrose, J.C. Zarnecki, D. Pullan, M.R. Sims, S. Haapanala, A.M. Harri, J. Polkko, C.F. Wilson, A.P. Zent, R.C. Quinn, F.J. Grunthaner, M.H. Hecht, J.R.C. Garry, The Beagle 2 environmental sensors: science goals and instrument description. Planet. Space Sci. 52, 1141–1156 (2004)

    Article  ADS  Google Scholar 

  • J. Vago, O. Witasse, H. Svedhem, P. Baglioni, A. Haldemann, G. Gianfiglio, T. Blancquaert, D. McCoy, R. de Groot, ESA ExoMars program: the next step in exploring Mars. Sol. Syst. Res. 49(7), 518–528 (2015)

    Article  ADS  Google Scholar 

  • I. Vidali, MarsTEM, un termometro per la misura della temperatura atmosferica marziana: progettazione, prototipazione e studio degli effetti dovuti all’autoriscaldamento. Bachalor Thesis, Padova Univ. (2012)

  • C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, M.A. Mischna, P.-Y. Meslin, K.A. Farley, P.G. Conrad, L.E. Christensen, A.A. Pavlov, J. Martín-Torres, M.-P. Zorzano, T.H. McConnochie, T. Owen, J.L. Eigenbrode, D.P. Glavin, A. Steele, C.A. Malespin, P.D. Archer, B. Sutter Jr., P. Coll, C. Freissinet, C.P. McKay, J.E. Moores, S.P. Schwenzer, J.C. Bridges, R. Navarro-Gonzalez, R. Gellert, M.T. Lemmon (the MSL Science Team), Mars methane detection and variability at Gale crater. Science 347(6220), 415–417 (2015)

    Article  ADS  Google Scholar 

  • C.F. Wilson, Measurement of wind on the surface of Mars. DPhil thesis (2003)

  • C.F. Wilson, S.B. Calcutt, T.V. Jones, The Beagle 2 wind sensor, EGS–AGU–EUG Joint Assembly, abstract #691 (2003)

  • C.F. Wilson, A.L. Camilletti, S.B. Calcutt, P.M. Ligrani, A wind tunnel for the calibration of Mars wind sensors. Planet. Space Sci. 56(11), 1532–1541 (2008). https://doi.org/10.1016/j.pss.2008.05.011

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Space Agency through the agreement I/018/12/0: “DREAMS EDM Payload ExoMars 2016.” The development of the DREAMS instrument was funded and coordinated by ASI.

DREAMS is the result of a cooperation of six European Countries (Italy, France, Spain, Netherlands, Finland, United Kingdom) led by Italy. DREAMS is built by UPD-CISAS with contribution from LATMOS/FMI/INTA/Oxford University/INAF-OAC, operated by INAF-OAC/UPD-CISAS and provided by ASI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Esposito.

Additional information

ExoMars-16

Edited by Håkan Svedhem and Christopher T. Russell

Appendix

Appendix

List of Acronyms

AC:

Alternating Current

ADC:

Analog to Digital Converter

AM0:

Air Mass 0

CEU:

Central Electronic Unit

CFD:

Computational Fluid Dynamics

COTS:

Commercial-Of-The-Shelf

CPU:

Central Processing Unit

DC:

Direct Current

DREAMS:

Dust characterization, Risk assessment and Environment Analyzer on the Martian Surface

DSP:

Digital Signal Processor

EDM:

Entry descent and landing Demonstrator Module

E-field:

Electric field

ESA:

European Space Agency

FM:

Flight Model

FMI:

Finnish Meteorological Institute

FoV:

Field of View

FPGA:

Field-Programmable Gate Array

FS:

Flight Spare

HK:

Housekeeping

INTA:

Instituto Nacional de Técnica Aeroespacial

ISO:

International Standards Organization

LTST:

Local True Solar Time

MCU:

Microcontroller Unit

MEMS:

Micro Electro-Mechanical System

MSL:

Mars Science Laboratory

MTL:

Mission TimeLine

NASA:

National Aeronautics and Space Administration

NIR:

Near Infrared

OBDH:

On-Board Data Handling

OD:

Optical Depth

OH:

Optical Head

P1/P2:

DREAMS Pressure Sensor 1/2

PCB:

Printed Circuit Board

PDS4:

Planetary Data System version 4

PE:

Processing Electronics

PTFE:

Polytetrafluoroethylene

RDS:

Radiation and Dust Sensor

REF:

Ground reference model

REMS:

Rover Environmental Monitoring Station

RH:

Relative Humidity

RTD:

Resistance Temperature Detector

SIS:

Solar Irradiance Sensor

SNR:

Signal to Noise Ratio

SPASOLAB:

Space Solar Cell Test Laboratory

SSW:

Sensor SWitch sequence

SZA:

Solar Zenith Angle

TID:

Total ionizing Dose

TGO:

Trace Gas Orbiter

TVT:

Thermal Vacuum Test

UHF:

Ultra High Frequency

UTC:

Universal Time Coordinated

UV:

UltraViolet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, F., Debei, S., Bettanini, C. et al. The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results. Space Sci Rev 214, 103 (2018). https://doi.org/10.1007/s11214-018-0535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0535-0

Keywords

Navigation