Skip to main content
Log in

Magnetic Signatures of Ionospheric and Magnetospheric Current Systems During Geomagnetic Quiet Conditions—An Overview

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

High-precision magnetic measurements taken by LEO satellites (flying at altitudes between 300 and 800 km) allow for studying the ionospheric and magnetospheric processes and electric currents that causes only weak magnetic signature of a few nanotesla during geomagnetic quiet conditions. Of particular importance for this endeavour are multipoint observations in space, such as provided by the Swarm satellite constellation mission, in order to better characterize the space-time-structure of the current systems.

Focusing on geomagnetic quiet conditions, we provide an overview of ionospheric and magnetospheric sources and illustrate their magnetic signatures with Swarm satellite observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • P. Alken, Observations and modeling of the ionospheric gravity and diamagnetic current systems from CHAMP and Swarm measurements. J. Geophys. Res. 121(1) (2016). doi:10.1002/2015JA022163

  • P. Alken, S. Maus, Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements. J. Geophys. Res. 112(A9), 09305 (2007). doi:10.1029/2007JA012524

    Article  Google Scholar 

  • P. Alken, S. Maus, A. Chulliat, P. Vigneron, O. Sirol, G. Hulot, Swarm equatorial electric field chain: first results. Geophys. Res. Lett. 42(3) (2015). doi:10.1002/2014GL062658

  • P. Alken, A. Maute, A.D. Richmond, The F-region gravity and pressure gradient current systems: A review. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0266-z

  • F. Christiansen, V.O. Papitashvili, T. Neubert, Seasonal variations of high-latitude field-aligned currents inferred from Ørsted and Magsat observations. J. Geophys. Res. 107(A2), 1029 (2002). doi:10.1029/2001JA900104

    Article  Google Scholar 

  • A. Chulliat, J. Matzka, A. Masson, S.E. Milan, Key ground-based and space-based assets to disentangle magnetic field sources in the Earth’s environment. Space Sci. Rev. (2016a). Under review

  • A. Chulliat, P. Vigneron, G. Hulot, First results from the Swarm dedicated ionospheric field inversion chain. Earth Planets Space 68, 104 (2016b). doi:10.1186/s40623-016-0481-6

    Article  ADS  Google Scholar 

  • U. Engels, N. Olsen, Computation of magnetic fields within source regions of ionospheric and magnetospheric currents. J. Atmos. Sol.-Terr. Phys. 60, 1585–1592 (1998)

    Article  ADS  Google Scholar 

  • C.C. Finlay, N. Olsen, S. Kotsiaros, N. Gillet, L. Tøffner-Clausen, Recent geomagnetic secular variation from Swarm and ground observatories in the CHAOS-6 geomagnetic field model. Earth Planets Space 68, 112 (2016). doi:10.1186/s40623-016-0486-1

    Article  ADS  Google Scholar 

  • J.M. Forbes, The equatorial electrojet. Rev. Geophys. Space Phys. 19, 469–504 (1981)

    Article  ADS  Google Scholar 

  • N. Fukushima, Eastward ring-current at the bottom of the ionosphere detected by MAGSAT, unpublished manuscript, 1989

  • N. Fukushima, Some topics and historical episodes in geomagnetism and aeronomy. J. Geophys. Res. 99(A10), 19113 (1994). doi:10.1029/94ja00102

    Article  ADS  Google Scholar 

  • M. He, J. Vogt, H. Lühr, E. Sorbalo, A. Blagau, G. Le, G. Lu, A high-resolution model of field-aligned currents through empirical orthogonal functions analysis (MFACE). Geophys. Res. Lett. 39(18), (2012). doi:10.1029/2012gl053168

  • G. Hulot, T.J. Sabaka, N. Olsen, A. Fournier, The present and future geomagnetic field, in Treatise on Geophysics, second edition, vol. 5, ed. by G. Schubert (Elsevier, Oxford, 2015), pp. 33–78. Chap. 02. 978-0-444-53803-1. doi:10.1016/B978-0-444-53802-4.00096-8

    Chapter  Google Scholar 

  • T.J. Immel, S.B. Mende, H.U. Frey, L.M. Peticolas, E. Sagawa, Determination of low latitude plasma drift speeds from FUV images. Geophys. Res. Lett. 30(18) (2003). doi:10.1029/2003GL017573

  • D. Ivers, R. Stening, J. Turner, D. Winch, Equatorial electrojet from Ørsted scalar magnetic field observations. J. Geophys. Res. 108, 1061 (2003)

    Article  Google Scholar 

  • K. Kauristie, A. Morschhauser, N. Olsen, C. Finlay, R.L. McPherron, J.W. Gjerloev, H.J. Opgenoorth, On the usage of geomagnetic indices for data selection in internal field modelling. Space Sci. Rev. (2016). Under review

  • D.J. Knipp, T. Matsuo, L. Kilcommons, A. Richmond, B. Anderson, H. Korth, R. Redmon, B. Mero, N. Parrish, Comparison of magnetic perturbation data from LEO satellite constellations: statistics of DMSP and AMPERE. Space Weather 12(1) (2014). doi:10.1002/2013SW000987

  • R.A. Langel, R.H. Estes, Large-scale, near-Earth magnetic fields from external sources and the corresponding induced internal field. J. Geophys. Res. 90, 2487–2494 (1985a)

    Article  ADS  Google Scholar 

  • R.A. Langel, R.H. Estes, The near-Earth magnetic field at 1980 determined from MAGSAT data. J. Geophys. Res. 90, 2495–2509 (1985b)

    Article  ADS  Google Scholar 

  • K.M. Laundal, C.C. Finlay, N. Olsen, Sunlight effects on the 3D polar current system determined from low Earth orbit measurements. Earth Planets Space 68, 142 (2016). doi:10.1186/s40623-016-0518-x

    Article  ADS  Google Scholar 

  • G. Le, W.J. Burke, R.F. Pfaff, H. Freudenreich, S. Maus, H. Lühr, C/NOFS measurements of magnetic perturbations in the low-latitude ionosphere during magnetic storms. J. Geophys. Res. 116(A12), A12230 (2011). doi:10.1029/2011JA017026

    Article  ADS  Google Scholar 

  • V. Lesur, S. Macmillan, A.W.P. Thomson, A magnetic field model with daily variations of the magnetospheric field and its induced counterpart in 2001. Geophys. J. Int. 160(1), 79–88 (2005). doi:10.1111/j.1365-246X.2004.02479.x

    Article  ADS  Google Scholar 

  • H. Liu, C. Stolle, M. Förster, S. Watanabe, Solar activity dependence of the electron density in the equatorial anomaly regions observed by CHAMP. J. Geophys. Res. 112(A11) (2007). doi:10.1029/2007JA012616

  • H. Lühr, S. Maus, M. Rother, First in-situ observation of night-time \(F\) region currents with the CHAMP satellite. Geophys. Res. Lett. 29(10), 127-1 (2002)

    Article  Google Scholar 

  • H. Lühr, S. Maus, M. Rother, Noon-time equatorial electrojet: its spatial features as determined by the CHAMP satellite. J. Geophys. Res. 109(A1) (2004). doi:10.1029/2002JA009656

  • H. Lühr, S. Maus, Solar cycle dependence of magnetospheric currents and a model of their near-earth magnetic field. Earth Planets Space 62, 843–848 (2010). doi:10.5047/eps.2010.07.012

    Article  ADS  Google Scholar 

  • H. Lühr, J. Park, J.W. Gjerloev, J. Rauberg, I. Michaelis, J.M.G. Merayo, P. Brauer, Field-aligned currents scale analysis performed with the Swarm constellation. Geophys. Res. Lett. 42(1), 1–8 (2015). doi:10.1002/2014gl062453

    Article  ADS  Google Scholar 

  • H. Lühr, G. Kervalishvili, I. Michaelis, J. Rauberg, P. Ritter, J. Park, J.M.G. Merayo, P. Brauer, The interhemispheric and F region dynamo currents revisited with the Swarm constellation. Geophys. Res. Lett. 42(9), 3069–3075 (2015). 2015GL063662. doi:10.1002/2015GL063662

    Article  ADS  Google Scholar 

  • H. Lühr, C. Xiong, N. Olsen, G. Le, Near-Earth magnetic field effects of large-scale magnetospheric currents. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0267-y

    Google Scholar 

  • C. Manoj, A.V. Kuvshinov, S. Maus, H. Lühr, Ocean circulation generated magnetic signals. Earth Planets Space 58, 429–437 (2006)

    Article  ADS  Google Scholar 

  • S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005)

    Article  ADS  Google Scholar 

  • P.T. Newell, J.W. Gjerloev, Supermag-based partial ring current indices. J. Geophys. Res. 117(A5), A05215 (2012). doi:10.1029/2012JA017586

    Article  ADS  Google Scholar 

  • N. Olsen, K.H. Glassmeier, X. Jia, Separation of the magnetic field into external and internal parts. Space Sci. Rev. 152, 135–157 (2010). doi:10.1007/s11214-009-9563-0

    Article  ADS  Google Scholar 

  • N. Olsen, Ionospheric \(F\) region currents at middle and low latitudes estimated from Magsat data. J. Geophys. Res. 102(A3), 4563–4576 (1997)

    Article  ADS  Google Scholar 

  • N. Olsen, A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Ørsted data. Geophys. J. Int. 149(2), 454–462 (2002)

    Article  ADS  Google Scholar 

  • N. Olsen, C. Stolle, Satellite geomagnetism. Annu. Rev. Earth Planet. Sci. 40(1), 441–465 (2012). doi:10.1146/annurev-earth-042711-105540

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, C.C. Finlay, T.J. Sabaka, I. Michaelis, J. Rauberg, L. Tøffner-Clausen, The CHAOS-4 geomagnetic field model. Geophys. J. Int. 197, 815–827 (2014)

    Article  ADS  Google Scholar 

  • N. Olsen, C.C. Finlay, S. Kotsiaros, L. Tøffner-Clausen, A model of Earth’s magnetic field derived from two years of Swarm satellite constellation data. Earth Planets Space 68, 124 (2016). doi:10.1186/s40623-016-0488-z

    Article  ADS  Google Scholar 

  • C.A. Onwumechili, Geomagnetic variations in the equatorial zone, in Physics of Geomagnetic Phenomena, ed. by S. Matsushita, W.H. Campbell (Academic Press, San Diego, 1967), pp. 425–507

    Chapter  Google Scholar 

  • J. Park, H. Lühr, C. Stolle, M. Rother, K.W. Min, J.K. Chung, Y.H. Kim, I. Michaelis, M. Noja, Magnetic signatures of medium-scale traveling ionospheric disturbances as observed by CHAMP. J. Geophys. Res. 114(A3), 03307 (2009)

    Article  Google Scholar 

  • J. Park, H. Lühr, G. Kervalishvili, J. Rauberg, I. Michaelis, C. Stolle, Y.-S. Kwak, Nighttime magnetic field fluctuations in the topside ionosphere at midlatitudes and their relation to medium-scale traveling ionospheric disturbances: the spatial structure and scale sizes. J. Geophys. Res. 120(8), 6818–6830 (2015). 2015JA021315. doi:10.1002/2015JA021315

    Article  Google Scholar 

  • N.M. Pedatella, J.M. Forbes, A. Maute, A.D. Richmond, T.-W. Fang, K.M. Larson, G. Millward, Longitudinal variations in the F region ionosphere and the topside ionosphere-plasmasphere: observations and model simulations. J. Geophys. Res. 116(A12), (2011). doi:10.1029/2011ja016600

  • A.D. Richmond, Ionospheric electrodynamics using magnetic Apex coordinates. J. Geomagn. Geoelectr. 47, 191–212 (1995)

    Article  Google Scholar 

  • P. Ritter, H. Lühr, Search for magnetically quiet CHAMP polar passes and the characteristics of ionospheric currents during the dark season. Ann. Geophys. 24(11), 2997–3009 (2006). doi: 10.5194/angeo-24-2997-2006

    Article  ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, R.H. Tyler, A. Kuvshinov, CM5, a pre-Swarm comprehensive magnetic field model derived from over 12 years of CHAMP, Ørsted, SAC-C and observatory data. Geophys. J. Int. 200, 1596–1626 (2015). doi:10.1093/gji/ggu493

    Article  ADS  Google Scholar 

  • A. Saito, T. Iyemori, M. Sugiura, N.C. Maynard, T.L. Aggson, L.H. Brace, M. Takeda, M. Yamamoto, Conjugate occurrence of the electric field fluctuations in the nighttime midlatitude ionosphere. J. Geophys. Res. 100(A11), 21439–21451 (1995). doi:10.1029/95ja01505

    Article  ADS  Google Scholar 

  • K. Shiokawa, Y. Otsuka, C. Ihara, T. Ogawa, F.J. Rich, Ground and satellite observations of nighttime medium-scale traveling ionospheric disturbance at midlatitude. J. Geophys. Res. 108(A4), 1145 (2003). doi:10.1029/2002JA009639

    Article  Google Scholar 

  • C. Stolle, H. Lühr, M. Rother, G. Balasis, Magnetic signatures of equatorial spread \(F\), as observed by the CHAMP satellite. J. Geophys. Res. 111, 02304 (2006). doi:10.1029/2005JA011184

    Article  Google Scholar 

  • C. Stolle, H. Liu, V. Truhlik, H. Lühr, P.G. Richards, Solar flux variation of the electron temperature morning overshoot in the equatorial F region. J. Geophys. Res. 116(A4) (2011). doi:10.1029/2010JA016235

  • C. Stolle, I. Michaelis, J. Rauberg, The role of high-resolution geomagnetic field models for investigating ionosphereic currents at low earth orbit satellites. Earth Planets Space 68, 110 (2016). doi:10.1186/s40623-016-0494-1

    Article  ADS  Google Scholar 

  • M. Sugiura, Hourly values of equatorial Dst for IGY. Ann. Int. Geophys. Year 35, 49 (1964)

    Google Scholar 

  • M. Sugiura, Equatorial current sheet in the magnetosphere. J. Geophys. Res. 77(31), 6093–6103 (1972). doi:10.1029/ja077i031p06093

    Article  ADS  Google Scholar 

  • M. Sugiura, D.J. Poros, A magnetospheric field model incorporating the OGO 3 and 5 magnetic field observations. Planet. Space Sci. 21(10), 1763–1773 (1973). doi:10.1016/0032-0633(73)90167-0

    Article  ADS  Google Scholar 

  • M. Sugiura, B.G. Ledley, T.L. Skillman, J.P. Heppner, Magnetospheric-field distortions observed by OGO 3 and 5. J. Geophys. Res. 76(31), 7552–7565 (1971). doi:10.1029/ja076i031p07552

    Article  ADS  Google Scholar 

  • D. van Sabben, Magnetospheric currents, associated with the N-S asymmetry of \(\mathit{Sq}\). J. Atmos. Terr. Phys. 28, 965–981 (1966)

    Article  Google Scholar 

  • S. Vennerstrom, F. Christiansen, N. Olsen, T. Moretto, On the cause of IMF by related mid- and low latitude magnetic disturbances. Geophys. Res. Lett. 34(16) (2007). doi:10.1029/2007gl030175

  • C.L. Waters, B.J. Anderson, K. Liou, Estimation of global field aligned currents using the iridium system magnetometer data. Geophys. Res. Lett. 28(11), 2165–2168 (2001). doi:10.1029/2000gl012725

    Article  ADS  Google Scholar 

  • D.R. Weimer, Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. J. Geophys. Res. 106(A7), 12889–12902 (2001). doi:10.1029/2000ja000295

    Article  ADS  Google Scholar 

  • R.F. Woodman, Spread \(F\) – an old equatorial aeronomy problem finally resolved? Ann. Geophys. 27(5), 1915–1934 (2009). doi:10.5194/angeo-27-1915-2009

    Article  ADS  Google Scholar 

  • Y. Yamazaki, K. Yumoto, M.G. Cardinal, B.J. Fraser, P. Hattori, Y. Kakinami, J.Y. Liu, K.J.W. Lynn, R. Marshall, D. McNamara, T. Nagatsuma, V.M. Nikiforov, R.E. Otadoy, M. Ruhimat, B.M. Shevtsov, K. Shiokawa, S. Abe, T. Uozumi, A. Yoshikawa, An empirical model of the quiet daily geomagnetic field variation. J. Geophys. Res. 116(A10) (2011). doi:10.1029/2011JA016487

  • Y. Yokoyama, C. Stolle, Low and midlatitude ionospheric plasma density irregularities and their effects on the geomagnetic field. Space Sci. Rev. (2016). Under review

  • Q.-H. Zhang, M.W. Dunlop, M. Lockwood, R. Holme, Y. Kamide, W. Baumjohann, R.-Y. Liu, H.-G. Yang, E.E. Woodfield, H.-Q. Hu, B.-C. Zhang, S.-L. Liu, The distribution of the ring current: cluster observations. Ann. Geophys. 29(9), 1655–1662 (2011). doi:10.5194/angeo-29-1655-2011

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the International Space Science Institute Bern for giving us the possibility to take part in the Workshop on “Earth’s Magnetic Field” held in Bern in May 2015, and to Karl Magnus Laundal for providing us with data used to prepare Sect. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Olsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, N., Stolle, C. Magnetic Signatures of Ionospheric and Magnetospheric Current Systems During Geomagnetic Quiet Conditions—An Overview. Space Sci Rev 206, 5–25 (2017). https://doi.org/10.1007/s11214-016-0279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0279-7

Keywords

Navigation