Skip to main content
Log in

Origins of the Earth’s Diffuse Auroral Precipitation

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Earth’s diffuse auroral precipitation provides the major source of energy input into the nightside upper atmosphere and acts as an essential linkage of the magnetosphere-ionosphere coupling. Resonant wave-particle interactions play a dominant role in the scattering of injected plasma sheet electrons, leading to the diffuse auroral precipitation. We review the recent advances in understanding the origin of the diffuse aurora and in quantifying the exact roles of various magnetospheric waves in producing the global distribution of diffuse auroral precipitation and its variability with the geomagnetic activity. Combined scattering by upper-and lower-band chorus accounts for the most intense inner magnetospheric electron diffuse auroral precipitation on the nightside. Dayside chorus can be responsible for the weaker dayside electron diffuse auroral precipitation. Pulsating auroras, the dynamic auroral structures embedded in the diffuse aurora, can be mainly caused by modulation of the excitation of lower band chorus due to macroscopic density variations in the magnetosphere. Electrostatic electron cyclotron harmonic waves are an important or even dominant cause for the nightside electron diffuse auroral precipitation beyond \({\sim}8R_{e}\) and can also contribute to the occurrence of the pulsating aurora at high \(L\)-shells. Scattering by electromagnetic ion cyclotron waves could quite possibly be the leading candidate responsible for the ion precipitation (especially the reversed-type events of the energy-latitude dispersion) in the regions of the central plasma sheet and ring current. We conclude the review with a summary of current understanding, outstanding questions, and a number of suggestions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • S.-I. Akasofu, Auroral morphology: a historical account and major auroral features during auroral substorms, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. AGU Monograph (2012)

    Google Scholar 

  • J.M. Albert, Nonlinear interaction of outer zone electrons with VLF waves. Geophys. Res. Lett. 29(8), 1275 (2002). doi:10.1029/2001GL013941

    Article  ADS  Google Scholar 

  • J.M. Albert, Simple approximations of quasi-linear diffusion coefficients. J. Geophys. Res. 112, A12202 (2007). doi:10.1029/2007JA012551

    Article  ADS  Google Scholar 

  • R.R. Anderson, K. Maeda, VLF emissions associated with enhanced magnetospheric electrons. J. Geophys. Res. 82(1), 135–146 (1977)

    Article  ADS  Google Scholar 

  • B.J. Anderson, R.E. Erlandson, L.J. Zanetti, A statistical study of Pc1-2 magnetic pulsations in the equatorial magnetosphere: 1. Equatorial occurrence distributions. J. Geophys. Res. 97, 3075 (1992a)

    Article  ADS  Google Scholar 

  • B.J. Anderson, R.E. Erlandson, L.J. Zanetti, A statistical study of Pc1-2 magnetic pulsations in the equatorial magnetosphere: 2. Wave properties. J. Geophys. Res. 97, 3089 (1992b)

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla, C.F. Kennel, Nonconvective and convective electron cyclotron harmonic instabilities. J. Geophys. Res. 83, 1531–1543 (1978)

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla, J. Berchem, J. Buchner, L.M. Zelenyi, Chaotic scattering and acceleration of ions in Earth’s magnetotail. Geophys. Res. Lett. 17, 2317–2320 (1990). doi:10.1029/GL017i013p02317

    Article  ADS  Google Scholar 

  • G. Belmont, D. Fontaine, P. Canu, Are equatorial electron cyclotron waves responsible for diffuse auroral electron precipitation? J. Geophys. Res. 88(A11), 9163–9170 (1983)

    Article  ADS  Google Scholar 

  • T.J. Birmingham, T.G. Northrop, C.G. Falthammar, Charged particle diffusion by violation of the third adiabatic invariant. Phys. Fluids 10, 660 (1968)

    Google Scholar 

  • J. Bortnik, R.M. Thorne, N.P. Meredith, Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes. J. Geophys. Res. 112, A08204 (2007). doi:10.1029/2006JA012237

    ADS  Google Scholar 

  • J. Bortnik, R.M. Thorne, U.S. Inan, Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys. Res. Lett. 35, L21102 (2008). doi:10.1029/2008GL035500

    Article  ADS  Google Scholar 

  • T. Bräysy, K. Mursula, G. Marklund, Ion cyclotron waves during a great magnetic storm observed by Freja double-probe electric field instrument. J. Geophys. Res. 103, 4145 (1998)

    Article  ADS  Google Scholar 

  • A.W. Breneman, C.A. Kletzing, J. Pickett, J. Chum, O. Santolik, Statistics of multispacecraft observations of chorus dispersion and source location. J. Geophys. Res. 114, A06202 (2009). doi:10.1029/2008JA013549

    Article  ADS  Google Scholar 

  • N.L. Bunch, M. Spasojevic, Y.Y. Shprits, X. Gu, F. Foust, The spectral extent of chorus in the off-equatorial magnetosphere. J. Geophys. Res. Space Phys. 118, 1–6 (2013). doi:10.1029/2012JA018182

    Article  ADS  Google Scholar 

  • J.L. Burch, Diagnosis of auroral acceleration mechanisms by particle measurements, in Auroral Physics, ed. by C.-I. Meng, M.J. Rycroft, L.A. Frank (Cambridge University Press, Cambridge, 1991), pp. 97–109

    Google Scholar 

  • W.J. Burtis, R.A. Helliwell, Banded chorus—a new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3. J. Geophys. Res. 74(11), 3002–3010 (1969). doi:10.1029/JA074i011p03002

    Article  ADS  Google Scholar 

  • W. Burtis, R. Helliwell, Magnetospheric chorus: amplitude and growth rate. J. Geophys. Res. 80(22), 3265–3270 (1975). doi:10.1029/JA080i022p03265

    Article  ADS  Google Scholar 

  • W.J. Burtis, R.A. Helliwell, Magnetospheric chorus: occurrence patterns and normalized frequency. Planet. Space Sci. 24, 1007–1010 (1976). doi:10.1016/0032-0633(76)90119-7

    Article  ADS  Google Scholar 

  • R.K. Burton, R.E. Holzer, The origin and propagation of chorus in the outer magnetosphere. J. Geophys. Res. 79(7), 1014–1023 (1974). doi:10.1029/JA079i007p01014

    Article  ADS  Google Scholar 

  • C. Cattell et al., Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys. Res. Lett. 35, L01105 (2008). doi:10.1029/2007GL032009

    Article  ADS  Google Scholar 

  • M.W. Chen, M. Schulz, Simulations of storm time diffuse aurora with plasmasheet electrons in strong pitch angle diffusion. J. Geophys. Res. 106(A2), 1873–1886 (2001a)

    Article  ADS  Google Scholar 

  • M.W. Chen, M. Schulz, Simulations of diffuse aurora with plasma sheet electrons in pitch angle diffusion less than everywhere strong. J. Geophys. Res. 106(A12), 28949–28966 (2001b)

    Article  ADS  Google Scholar 

  • M.W. Chen, M. Schulz, P.C. Anderson, G. Lu, G. Germany, M. Wüest, Storm time distributions of diffuse auroral electron energy and X-ray flux: comparison of drift-loss simulations with observations. J. Geophys. Res. 110, A03210 (2005). doi:10.1029/2004JA010725

    ADS  Google Scholar 

  • J.M. Cornwall, F.V. Coroniti, R.M. Thorne, Turbulent loss of ring current protons. J. Geophys. Res. 75, 4699 (1970)

    Article  ADS  Google Scholar 

  • F.V. Coroniti, Space plasma turbulent dissipation: reality of myth? Space Sci. Rev. 42, 399–410 (1985)

    Article  ADS  Google Scholar 

  • C.M. Cully, J.W. Bonnell, R.E. Ergun, THEMIS observations of long-lived regions of large-amplitude whistler waves in the inner magnetosphere. Geophys. Res. Lett. 35, L17S16 (2008). doi:10.1029/2008GL033643

    Article  Google Scholar 

  • G.T. Davidson, Pitch angle diffusion in morningside aurorae 1. The role of the loss cone in the formation of impulsive bursts of precipitation. J. Geophys. Res. 91(A4), 4413–4427 (1985)

    Article  ADS  Google Scholar 

  • G.T. Davidson, Pitch-angle diffusion and the origin of temporal and spatial structures in morningside aurorae. Space Sci. Rev. 53, 45–82 (1990)

    Article  ADS  Google Scholar 

  • E. Donovan, B. Jackel, D. Klumpar, R. Strangeway, Energy dependence of the isotropy boundary latitude, in Proc. of Atmos. Studies by Optical Methods, vol. 92 (Sodankylä Geophysical Observatory Publications, Finland, 2003), pp. 11–14

    Google Scholar 

  • Y. Ebihara, Y.-M. Tanaka, S. Takasaki, A.T. Weatherwax, M. Taguchi, Quasi-stationary auroral patches observed at the South Pole station. J. Geophys. Res. 112, A01201 (2007). doi:10.1029/2006JA012087

    Article  ADS  Google Scholar 

  • R.E. Erlandson, A.J. Ukhorskiy, Observations of electromagnetic ion cyclotron waves during geomagnetic storms: wave occurrence and pitch angle scattering. J. Geophys. Res. 106, 3883 (2001)

    Article  ADS  Google Scholar 

  • Y.I. Feldstein, Some problems concerning the morphology of auroras and magnetic disturbances at high latitudes. Geomagn. Aeron. 3, 183–192 (1963)

    ADS  MathSciNet  Google Scholar 

  • M.-C. Fok, R.B. Horne, N.P. Meredith, S.A. Glauert, Radiation belt environment model: application to space weather nowcasting. J. Geophys. Res. 113, A03S08 (2008). doi:10.1029/2007JA012558

    Article  ADS  Google Scholar 

  • D. Fontaine, M. Blanc, A theoretical approach to the morphology and the dynamics of diffuse auroral zones. J. Geophys. Res. 88(A9), 7171–7184 (1983)

    Article  ADS  Google Scholar 

  • L.A. Frank, K.L. Ackerson, Observations of charged particle precipitation into the auroral zone. J. Geophys. Res. 76, 3612 (1971). doi:10.1029/JA076i016p03612

    Article  ADS  Google Scholar 

  • B.J. Fraser, T.S. Nguyen, Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? J. Atmos. Sol.-Terr. Phys. 63, 1225 (2001)

    Article  ADS  Google Scholar 

  • B.J. Fraser, J.C. Samson, Y.D. Hu, R.L. McPherron, C.T. Russell, Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2. J. Geophys. Res. 97, 3063 (1992)

    Article  ADS  Google Scholar 

  • B.J. Fraser, H.J. Singer, W.J. Hughes, J.R. Wygant, R.R. Anderson, Y.D. Hu, CRRES Poynting vector observations of electromagnetic ion cyclotron waves near the plasmapause. J. Geophys. Res. 101, 15331 (1996)

    Article  ADS  Google Scholar 

  • R.W. Fredricks, F.L. Scarf, Recent studies of magnetospheric electric field emissions above the electron gyrofrequency. J. Geophys. Res. 78(1), 310–314 (1973). doi:10.1029/JA078i001p00310

    Article  ADS  Google Scholar 

  • H. Fritz, Polarlichter (L. Gerold’s Sohn, Vienna, 1873). 255 pp.

    Google Scholar 

  • R. Gendrin, General relationships between wave amplification and particle diffusion in a magnetoplasma. Rev. Geophys. 19(1), 171–184 (1981). doi:10.1029/RG019i001p00171

    Article  ADS  Google Scholar 

  • M.L. Gilson, J. Raeder, E. Donovan, Y.S. Ge, L. Kepko, Global simulation of proton precipitation due to field line curvature during substorms. J. Geophys. Res. 117, A05216 (2012). doi:10.1029/2012JA017562

    Article  ADS  Google Scholar 

  • S.A. Glauert, R.B. Horne, Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res. 110, A04206 (2005). doi:10.1029/2004JA010851

    Article  ADS  Google Scholar 

  • B.E. Goldstein, B.T. Tsurutani, Wave normal directions of chorus near the equatorial source region. J. Geophys. Res. 89(A5), 2789–2810 (1984). doi:10.1029/JA089iA05p02789

    Article  ADS  Google Scholar 

  • M.P. Gough, P.J. Christiansen, G. Martelli, E.J. Gershuny, Interaction of electrostatic waves with warm electrons at the geomagnetic equator. Nature 279, 515–517 (1979). doi:10.1038/279515a0

    Article  ADS  Google Scholar 

  • D.A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  • D.A. Hamlin, R. Karplus, R.C. Vik, K.M. Watson, Mirror and azimuthal drift frequencies for geomagnetically trapped particles. J. Geophys. Res. 66(1), 1–4 (1961)

    Article  ADS  Google Scholar 

  • D. Han, X. Chen, J. Liu, Q. Qiu, K. Keika, Z. Hu, J. Liu, H. Hu, H. Yang, An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station. J. Geophys. Res. Space Phys. 120 (2015). doi:10.1002/2015JA021699

  • N. Haque, M. Spasojevic, O. Santolík, U.S. Inan, Wave normal angles of magnetospheric chorus emissions observed on the polar spacecraft. J. Geophys. Res. 115, A00F07 (2010). doi:10.1029/2009JA014717

    Article  ADS  Google Scholar 

  • D.A. Hardy, M.S. Gussenhoven, E. Holeman, A statistical model of auroral electron precipitation. J. Geophys. Res. 90(A5), 4229–4248 (1985). doi:10.1029/JA090iA05p04229

    Article  ADS  Google Scholar 

  • D.A. Hardy, M.S. Gussenhoven, D. Brautigam, A statistical model of auroral ion precipitation. J. Geophys. Res. 94, 370–392 (1989). doi:10.1029/JA094iA01p00370

    Article  ADS  Google Scholar 

  • M. Hayakawa, Y. Yamanaka, M. Parrot, F. Lefeuvre, The wave normals of magnetospheric chorus emissions observed on board GEOS 2. J. Geophys. Res. 89(A5), 2811–2821 (1984). doi:10.1029/JA089iA05p02811

    Article  ADS  Google Scholar 

  • M. Hayakawa, K. Ohta, S. Shimakura, Spaced direction finding of nighttime whistlers at low and equatorial latitudes and their propagation mechanism. J. Geophys. Res. 95(A9), 15091–15102 (1990). doi:10.1029/JA095iA09p15091

    Article  ADS  Google Scholar 

  • R.B. Horne, Path-integrated growth of electrostatic waves: the generation of terrestrial myriametric radiation. J. Geophys. Res. 94(A7), 8895–8909 (1989)

    Article  ADS  Google Scholar 

  • R.B. Horne, R.M. Thorne, Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere. J. Geophys. Res. 99, 17259–17273 (1994)

    Article  ADS  Google Scholar 

  • R.B. Horne, R.M. Thorne, Electron pitch angle diffusion by electrostatic electron cyclotron harmonic waves: the origin of pancake distributions. J. Geophys. Res. 105(A3), 5391–5402 (2000)

    Article  ADS  Google Scholar 

  • R.B. Horne, R.M. Thorne, N.P. Meredith, R.R. Anderson, Diffuse auroral electron scattering by electron cyclotron harmonic and whistler mode waves during an isolated substorm. J. Geophys. Res. 108(A7), 1290 (2003). doi:10.1029/2002JA009736

    Article  Google Scholar 

  • R.B. Horne, R.M. Thorne, S.A. Glauert, J.M. Albert, N.P. Meredith, R.R. Anderson, Timescale for radiation belt electron acceleration by whistler mode chorus waves. J. Geophys. Res. 110, A03225 (2005). doi:10.1029/2004JA010811

    Article  ADS  Google Scholar 

  • G.B. Hospodarsky, T.F. Averkamp, W.S. Kurth, D.A. Gurnett, M. Dougherty, U. Inan, T. Wood, Wave normal and Poynting vector calculations using the Cassini radio and plasma wave instrument. J. Geophys. Res. 106(A12), 30253–30269 (2001). doi:10.1029/2001JA900114

    Article  ADS  Google Scholar 

  • Z.-J. Hu et al., Synoptic distribution of dayside aurora: multiple-wavelength all-sky observation at Yellow River Station in Ny-Ålesund, Svalbard. J. Atmos. Sol.-Terr. Phys. 71, 794–804 (2009). doi:10.1016/j.jastp.2009.02.010

    Article  ADS  Google Scholar 

  • Z.-J. Hu, H.-G. Yang, D. Han, D.-H. Huang, B. Zhang, H.-Q. Hu, R.-Y. Liu, Dayside auroral emissions controlled by IMF: a survey for dayside auroral excitation at 557.7 and 630.0 nm in Ny-Ålesund, Svalbard. J. Geophys. Res. 117, A02201 (2012). doi:10.1029/2011JA017188

    ADS  Google Scholar 

  • W.L. Imhof, J.B. Reagan, E.E. Gaines, Studies of the sharply defined L dependent energy threshold for isotropy at the midnight trapping boundary. J. Geophys. Res. 84, 6371–6384 (1979)

    Article  ADS  Google Scholar 

  • U. Inan, Y. Chiu, G. Davidson, Whistler-mode chorus and morning-side aurorae. Geophys. Res. Lett. 19, 653–656 (1992)

    Article  ADS  Google Scholar 

  • A.D. Johnstone, D.M. Walton, R. Liu, D. Hardy, Pitch angle diffusion of low-energy electrons by whistler mode waves. J. Geophys. Res. 98, 5959–5967 (1993)

    Article  ADS  Google Scholar 

  • S.L. Jones et al., PFISR and ROPA observations of pulsating aurora. J. Atmos. Sol.-Terr. Phys. 71, 708 (2009)

    Article  ADS  Google Scholar 

  • S.L. Jones, M.R. Lessard, K. Rychert, E. Spanswick, E. Donovan, Large scale aspects and temporal evolution of pulsating aurora. J. Geophys. Res. 116, A03214 (2011). doi:10.1029/2010JA015840

    Article  ADS  Google Scholar 

  • V.K. Jordanova, J.U. Kozyra, A.F. Nagy, Effects of heavy ions on the quasi-linear diffusion coefficients from resonant interactions with electromagnetic ion cyclotron waves. J. Geophys. Res. 101(A9), 19771–19778 (1996). doi:10.1029/96JA01641

    Article  ADS  Google Scholar 

  • V.K. Jordanova, C.J. Farrugia, R.M. Thorne, G.V. Khazanov, G.D. Reeves, M.F. Thomsen, Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm. J. Geophys. Res. 106, 7 (2001)

    Article  ADS  Google Scholar 

  • V.K. Jordanova, R.M. Thorne, W. Li, Y. Miyoshi, Excitation of whistler mode chorus from global ring current simulations. J. Geophys. Res. 115, A00F10 (2010). doi:10.1029/2009JA014810

    ADS  Google Scholar 

  • Y. Katoh, Y. Omura, Computer simulation of chorus wave generation in the Earth’s inner magnetosphere. Geophys. Res. Lett. 34, L03102 (2007). doi:10.1029/2006GL028594

    ADS  Google Scholar 

  • K. Keika, K. Takahashi, A.Y. Ukhorskiy, Y. Miyoshi, Global characteristics of electromagnetic ion cyclotron waves: occurrence rate and its storm dependence. J. Geophys. Res. Space Phys. 118, 4135–4150 (2013). doi:10.1002/jgra.50385

    Article  ADS  Google Scholar 

  • C.F. Kennel, Consequences of a magnetospheric plasma. Rev. Geophys. 7(1,2), 379–419 (1969)

    Article  ADS  Google Scholar 

  • C.F. Kennel, M. Ashour-Abdalla, Electrostatic waves and the strong diffusion of magnetospheric electrons, in Magnetospheric Plasma Physics, ed. by A. Nishida (Center for Academic Publications, Tokyo, 1982), pp. 245–344

    Chapter  Google Scholar 

  • C.F. Kennel, F. Engelmann, Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids 9(12), 2377–2388 (1966)

    Article  ADS  Google Scholar 

  • C.F. Kennel, H. Petschek, Limit on stably trapped particle fluxes. J. Geophys. Res. 71(1), 1–28 (1966)

    Article  ADS  Google Scholar 

  • C.F. Kennel, F.L. Scarf, R.W. Fredricks, J.H. McGehee, F.V. Coroniti, VLF electric field observations in the magnetosphere. J. Geophys. Res. 75(31), 6136–6152 (1970)

    Article  ADS  Google Scholar 

  • H.C. Koons, J.L. Roeder, A survey of equatorial magnetospheric wave activity between 5 and 8 RE. Planet. Space Sci. 38(10), 1335–1341 (1990). doi:10.1016/0032-0633(90)90136-E

    Article  ADS  Google Scholar 

  • J.U. Kozyra, T.E. Cravens, A.F. Nagy, E.G. Fontheim, R.S.B. Ong, Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region. J. Geophys. Res. 89, 2217–2233 (1984)

    Article  ADS  Google Scholar 

  • M. Kubyshkina, V. Sergeev, N. Tsyganenko, V. Angelopoulos, A. Runov, H. Singer, K.H. Glassmeier, H.U. Auster, W. Baumjohann, Toward adapted time-dependent magnetospheric models: a simple approach based on tuning the standard model. J. Geophys. Res. 114, A00C21 (2009). doi:10.1029/2008JA013547

    Article  ADS  Google Scholar 

  • M. Kubyshkina, V. Sergeev, N. Tsyganenko, V. Angelopoulos, A. Runov, E. Donovan, H. Singer, U. Auster, W. Baumjohann, Time-dependent magnetospheric configuration and breakup mapping during a substorm. J. Geophys. Res. 116, A00I27 (2011). doi:10.1029/2010JA015882

    Article  ADS  Google Scholar 

  • D.S. Lauben, U.S. Inan, T.F. Bell, D.A. Gurnett, Source characteristics of ELF/VLF chorus. J. Geophys. Res. 107(A12), 1429 (2002). doi:10.1029/2000JA003019

    Article  Google Scholar 

  • M. Lessard, A review of pulsating aurora, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. AGU Monograph (2012)

    Google Scholar 

  • W. Li, R.M. Thorne, V. Angelopoulos, J. Bortnik, C.M. Cully, B. Ni, O. LeContel, A. Roux, U. Auster, W. Magnes, Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft. Geophys. Res. Lett. 36, L09104 (2009). doi:10.1029/2009GL037595

    ADS  Google Scholar 

  • W. Li et al., THEMIS analysis of observed equatorial electron distributions responsible for the chorus excitation. J. Geophys. Res. 115, A00F11 (2010). doi:10.1029/2009JA014845

    ADS  Google Scholar 

  • W. Li, J. Bortnik, R.M. Thorne, Y. Nishimura, V. Angelopoulos, O. Le Contel, J.B. Bonnell, Global distribution of wave amplitudes and wave normal distributions of chorus waves with high-resolution THEMIS wave observations. J. Geophys. Res. 116, A12205 (2011a). doi:10.1029/2011JA017035

    ADS  Google Scholar 

  • W. Li, J. Bortnik, R.M. Thorne, Y. Nishimura, V. Angelopoulos, L. Chen, Modulation of whistler-mode chorus waves: 2 role of density variations. J. Geophys. Res. 116, A06206 (2011b). doi:10.1029/2010JA016313

    ADS  Google Scholar 

  • W. Li, R.M. Thorne, J. Bortnik, Y. Nishimura, V. Angelopoulos, Modulation of whistler mode chorus waves: 1. Role of compressional Pc4–5 pulsations. J. Geophys. Res. 116, A06205 (2011c). doi:10.1029/2010JA016312

    ADS  Google Scholar 

  • W. Li, R.M. Thorne, J. Bortnik, Y.Y. Shprits, Y. Nishimura, V. Angelopoulos, C. Chaston, O. Le Contel, J.W. Bonnell, Typical properties of rising and falling tone chorus waves. Geophys. Res. Lett. 38, L14103 (2011d). doi:10.1029/2011GL047925

    ADS  Google Scholar 

  • J. Liang, V. Uritsky, E. Donovan, B. Ni, E. Spanswick, T. Trondsen, J. Bonnell, A. Roux, U. Auster, D. Larson, THEMIS observations of electron cyclotron harmonic emissions, ULF waves, and pulsating auroras on January 4 2009. J. Geophys. Res. 115, A10235 (2010). doi:10.1029/2009JA015148

    Article  ADS  Google Scholar 

  • J. Liang, B. Ni, E. Spanswick, M. Kubyshkina, E.F. Donovan, V.M. Uritsky, R.M. Thorne, V. Angelopoulos, Fast earthward flows, electron cyclotron harmonic waves, and diffuse auroras: conjugate observations and synthesized scenario. J. Geophys. Res. 116, A12220 (2011a). doi:10.1029/2011JA017094

    ADS  Google Scholar 

  • J. Liang, E. Spanswick, M.J. Nicolls, E.F. Donovan, D. Lummerzheim, W. Liu, (2011b), Multi-instrument observations of soft-electron precipitation and its association with magnetospheric flows. J. Geophys. Res. 116. doi:10.1029/2010JA015867

  • J. Liang, E. Donovan, E. Spanswick, V. Angelopoulos, Multiprobe estimation of field line curvature radius in the equatorial magnetosphere and the use of proton precipitations in magnetosphere-ionosphere mapping. J. Geophys. Res. Space Phys. 118, 4924–4945 (2013). doi:10.1002/jgra.50454

    Article  ADS  Google Scholar 

  • J. Liang, E. Donovan, B. Ni, C. Yue, F. Jiang, V. Angelopoulos, On an energy-latitude dispersion pattern of ion precipitation potentially associated with magnetospheric EMIC waves. J. Geophys. Res. Space Phys. 119, 8137–8160 (2014). doi:10.1002/2014JA020226

    Article  ADS  Google Scholar 

  • E. Loomis, On the geographic distribution of auroras in the northern hemisphere. Am. J. Sci. Arts 30, 89–94 (1860)

    Google Scholar 

  • A.T.Y. Lui, C.D. Anger, A uniform belt of diffuse auroral emissions seen by the ISIS-2 scanning photometer. Planet. Space Sci. 21, 809 (1973)

    ADS  Google Scholar 

  • A.T.Y. Lui, D. Venkatesan, C.D. Anger, S.-I. Akasofu, W.J. Heikkila, J.D. Winningham, J.R. Burrows, Simultaneous observations of particle precipitations and auroral emissions by the isis 2 satellite in the 19-24 MLT sector. J. Geophys. Res. 82(16), 2210–2226 (1977)

    Article  ADS  Google Scholar 

  • D. Lummerzheim, Electron transport and optical emissions in the aurora. Ph.D. thesis, Univ. of Alaska, Fairbanks (1987)

  • L.R. Lyons, Electron diffusion driven by magnetospheric electrostatic waves. J. Geophys. Res. 79(4), 575–580 (1974a)

    Article  ADS  Google Scholar 

  • L.R. Lyons, General relations for resonant particle diffusion in pitch angle and energy. J. Plasma Phys. 12, 45–49 (1974b). doi:10.1017/S0022377800024910

    Article  ADS  Google Scholar 

  • L. Lyons, R. Thorne, C. Kennel, Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77(19), 3455–3474 (1972)

    Article  ADS  Google Scholar 

  • Q. Ma, B. Ni, X. Tao, R.M. Thorne, Evolution of the plasma sheet electron pitch angle distribution by whistler-mode chorus waves in non-dipolar magnetic fields. Ann. Geophys. 30, 751–760 (2012). doi:10.5194/angeo-30-751-2012

    Article  ADS  Google Scholar 

  • Q. Ma et al., Modeling inward diffusion and slow decay of energetic electrons in the Earth’s outer radiation belt. Geophys. Res. Lett. 42, 987–995 (2015). doi:10.1002/2014GL062977

    Article  ADS  Google Scholar 

  • J.P. McCollough, S.R. Elkington, D.N. Baker, The role of Shabansky orbits in compression-related electromagnetic ion cyclotron wave growth. J. Geophys. Res. 117, A01208 (2012). doi:10.1029/2011JA016948

    Article  ADS  Google Scholar 

  • C.-I. Meng, B. Mauk, C.E. McIlwain, Electron precipitation of evening diffuse aurora and its conjugate electron fluxes near the magnetospheric equator. J. Geophys. Res. 84(A6), 2545–2558 (1979)

    Article  ADS  Google Scholar 

  • N.P. Meredith, R.B. Horne, A.D. Johnstone, R.R. Anderson, The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere. J. Geophys. Res. 105(A6), 12907–12917 (2000)

    Article  ADS  Google Scholar 

  • N.P. Meredith, R.B. Horne, R.R. Anderson, Substorm dependence of chorus amplitudes: implications for the acceleration of electrons to relativistic energies. J. Geophys. Res. 106(A7), 13165–13178 (2001). doi:10.1029/2000JA900156

    Article  ADS  Google Scholar 

  • N.P. Meredith, M. Cain, R.B. Horne, R.M. Thorne, D. Summers, R.R. Anderson, Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. J. Geophys. Res. 108(A6), 1248 (2003a). doi:10.1029/2002JA009764

    Article  Google Scholar 

  • N.P. Meredith, R.M. Thorne, R.B. Horne, D. Summers, B.J. Fraser, R.R. Anderson, Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. 108(A6), 1250 (2003b). doi:10.1029/2002JA009700

    Article  Google Scholar 

  • N.P. Meredith, R.B. Horne, R.M. Thorne, R.R. Anderson, Survey of upper band chorus and ECH waves: implications for the diffuse aurora. J. Geophys. Res. 114, A07218 (2009). doi:10.1029/2009JA014230

    ADS  Google Scholar 

  • N.P. Meredith, R.B. Horne, T. Kersten, B.J. Fraser, R.S. Grew, Global morphology and spectral properties of EMIC waves derived from CRRES observations. J. Geophys. Res. Space Phys. 119, 5328–5342 (2014). doi:10.1002/2014JA020064

    Article  ADS  Google Scholar 

  • K. Min, J. Lee, K. Keika, W. Li, Global distribution of EMIC waves derived from THEMIS observations. J. Geophys. Res. 117, A05219 (2012). doi:10.1029/2012JA017515

    Article  ADS  Google Scholar 

  • Y. Miyoshi et al., Time of flight analysis of pulsating aurora electrons, considering wave-particle interactions with propagating whistler mode waves. J. Geophys. Res. 115, A10312 (2010). doi:10.1029/2009JA015127

    Article  ADS  Google Scholar 

  • Y. Miyoshi et al., Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probes observations. J. Geophys. Res. 120 (2015). doi:10.1029/2014JA020690

  • T.E. Moore, R.L. Arnoldy, J. Feynman, D.A. Hardy, Propagating substorm injection fronts. J. Geophys. Res. 86, 6713–6726 (1981). doi:10.1029/JA086iA08p06713

    Article  ADS  Google Scholar 

  • S.K. Morley, S.T. Ables, M.D. Sciffer, B.J. Fraser, Multipoint observations of Pc1-2 waves in the afternoon sector. J. Geophys. Res. 114, A09205 (2009). doi:10.1029/2009JA014162

    Article  ADS  Google Scholar 

  • H. Muto, M. Hayakawa, M. Parrot, F. Lefeuvre, Direction finding of half-gyrofrequency VLF emissions in the off-equatorial region of the magnetosphere and their generation and propagation. J. Geophys. Res. 92(A7), 7538–7550 (1987). doi:10.1029/JA092iA07p07538

    Article  ADS  Google Scholar 

  • A. Nakajima et al., Electron and wave characteristics observed by the THEMIS satellites near the magnetic equator during a pulsating aurora. J. Geophys. Res. 117, A03219 (2012). doi:10.1029/2009JA015127

    ADS  Google Scholar 

  • P.T. Newell, Reconsidering the inverted-V particle signature: relative frequency of large-scale electron acceleration events. J. Geophys. Res. 105, 15779 (2000). doi:10.1029/1999JA000051

    Article  ADS  Google Scholar 

  • P.T. Newell, T. Sotirelis, S. Wing, Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res. 114, A09207 (2009). doi:10.1029/2009JA014326

    Article  ADS  Google Scholar 

  • P.T. Newell, T. Sotirelis, S. Wing, Seasonal variations in diffuse, monoenergetic, and broadband aurora. J. Geophys. Res. 115, A03216 (2010). doi:10.1029/2009JA014805

    ADS  Google Scholar 

  • B. Ni, R.M. Thorne, Y.Y. Shprits, J. Bortnik, Resonant scattering of plasma sheet electrons by whistler-mode chorus: contribution to diffuse auroral precipitation. Geophys. Res. Lett. 35, L11106 (2008). doi:10.1029/2008GL034032

    Article  ADS  Google Scholar 

  • B. Ni, R.M. Thorne, R.B. Horne, N.P. Meredith, Y.Y. Shprits, L. Chen, W. Li, Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves. J. Geophys. Res. 116, A04218 (2011a). doi:10.1029/2010JA016232

    ADS  Google Scholar 

  • B. Ni, R.M. Thorne, J. Liang, V. Angelopoulos, C. Cully, W. Li, X. Zhang, M. Hartinger, O. LeContel, A. Roux, Global distribution of electrostatic electron cyclotron harmonic waves observed on THEMIS. Geophys. Res. Lett. 38, L17105 (2011b). doi:10.1029/2011GL048793

    Article  ADS  Google Scholar 

  • B. Ni, R.M. Thorne, N.P. Meredith, R.B. Horne, Y.Y. Shprits, Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves. J. Geophys. Res. 116, A04219 (2011c). doi:10.1029/2010JA016233

    ADS  Google Scholar 

  • B. Ni, R.M. Thorne, N.P. Meredith, Y.Y. Shprits, R.B. Horne, Diffuse auroral scattering by whistler mode chorus waves: dependence on wave normal angle distribution. J. Geophys. Res. 116, A10207 (2011d). doi:10.1029/2011JA016517

    ADS  Google Scholar 

  • B. Ni, R.M. Thorne, Y.Y. Shprits, K.G. Orlova, N.P. Meredith, Chorus-driven resonant scattering of diffuse auroral electrons in nondipolar magnetic fields. J. Geophys. Res. 116, A06225 (2011e). doi:10.1029/2011JA016453

    ADS  Google Scholar 

  • B. Ni, J. Liang, R.M. Thorne, V. Angelopoulos, R.B. Horne, M. Kubyshkina, E. Spanswick, E.F. Donovan, D. Lummerzheim, Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: a detailed case study. J. Geophys. Res. 117, A01218 (2012a). doi:10.1029/2011JA017095

    Article  ADS  Google Scholar 

  • B. Ni, R.M. Thorne, Q. Ma, Bounce-averaged Fokker-Planck diffusion equation in non-dipolar magnetic fields with applications to the Dungey magnetosphere. Ann. Geophys. 30, 733–750 (2012b). doi:10.5194/angeo-30-733-2012

    Article  ADS  Google Scholar 

  • B. Ni, J. Bortnik, Y. Nishimura, R.M. Thorne, W. Li, V. Angelopoulos, Y. Ebihara, A.T. Weatherwax, Chorus wave scattering responsible for the Earth’s dayside diffuse auroral precipitation: a detailed case study. J. Geophys. Res. Space Phys. 19, 897–908 (2014). doi:10.1002/2013JA019507

    Article  ADS  Google Scholar 

  • B. Ni, X. Cao, Z. Zou, C. Zhou, X. Gu, J. Bortnik, J. Zhang, S. Fu, Z. Zhao, R. Shi, L. Xie, Resonant scattering of outer zone relativistic electrons by multi-band EMIC waves and resultant electron loss timescales. J. Geophys. Res. Space Phys. 120 (2015). doi:10.1002/2015JA021466

  • Y. Nishimura et al., Identifying the driver of pulsating aurora. Science 330, 81–84 (2010). doi:10.1126/science.1193186

    Article  ADS  Google Scholar 

  • Y. Nishimura, J. Bortnik, W. Li, R.M. Thorne, L. Chen, L.R. Lyons, V. Angelopoulos, S.B. Mende, J. Bonnell, O. Le Contel, C. Cully, R. Ergun, U. Auster, Multi-event study of the correlation between pulsating aurora and whistler-mode chorus emissions. J. Geophys. Res. 116, A11221 (2011). doi:10.1029/2011JA016876

    ADS  Google Scholar 

  • Y. Nishimura et al., Structures of dayside whistler-mode waves deduced from conjugate diffuse aurora. J. Geophys. Res. Space Phys. 118, 664–673 (2013). doi:10.1029/2012JA018242

    Article  ADS  Google Scholar 

  • T. Nishiyama et al., The source region and its characteristic of pulsating aurora based on the Reimei observations. J. Geophys. Res. 116, A03226 (2011). doi:10.1029/2010JA015507

    Article  ADS  Google Scholar 

  • D. Nunn, Y. Omura, H. Matsumoto, I. Nagano, S. Yagitani, The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code. J. Geophys. Res. 102(A12), 27083–27097 (1997). doi:10.1029/97JA02518

    Article  ADS  Google Scholar 

  • Y. Omura, Y. Katoh, D. Summers, Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res. 113, A04223 (2008). doi:10.1029/2007JA012622

    Article  ADS  Google Scholar 

  • K.G. Orlova, Y.Y. Shprits, Dependence of pitch-angle scattering rates and loss timescales on the magnetic field model. Geophys. Res. Lett. 37, L05105 (2010). doi:10.1029/2009GL041639

    Article  ADS  Google Scholar 

  • K.G. Orlova, Y.Y. Shprits, On the bounce-averaging of scattering rates and the calculation of bounce period. Phys. Plasmas 18, 092904 (2011). doi:10.1063/1.3638137

    Article  ADS  Google Scholar 

  • K. Orlova, Y.Y. Shprits, Model of lifetimes of the outer radiation belt electrons in a realistic magnetic field using realistic chorus wave parameters. J. Geophys. Res. Space Phys. 119(2), 770–780 (2014). doi:10.1002/2013JA019596

    Article  ADS  Google Scholar 

  • M. Ozaki et al., Observed correlation between pulsating aurora and chorus wave at Syowa station in Antarctica: a case study. J. Geophys. Res. 117, A08211 (2012). doi:10.1029/2011JA017478

    Article  ADS  Google Scholar 

  • C. Paranicas, W.J. Hughes, H.J. Singer, R.R. Anderson, Banded electrostatic emissions observed by the CRRES plasma wave experiment. J. Geophys. Res. 97(A9), 13889–13898 (1992)

    Article  ADS  Google Scholar 

  • M. Parrot, C.A. Gaye, A statistical survey of ELF waves in a geostationary orbit. Geophys. Res. Lett. 21(23), 2463–2466 (1994). doi:10.1029/94GL01700

    Article  ADS  Google Scholar 

  • S.M. Petrinec, D.L. Chenette, J. Mobilia, M.A. Rinaldi, W.L. Imhof, Statistical X ray auroral emissions—PIXIE observations. Geophys. Res. Lett. 26(11), 1565–1568 (1999)

    Article  ADS  Google Scholar 

  • J.S. Pickett et al., Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth’s plasmapause. Geophys. Res. Lett. 37, L09104 (2010). doi:10.1029/2010GL042648

    Article  ADS  Google Scholar 

  • J.L. Roeder, H.C. Koons, A survey of electron cyclotron waves in the magnetosphere and the diffuse auroral electron precipitation. J. Geophys. Res. 94(A3), 2529–2541 (1989)

    Article  ADS  Google Scholar 

  • J.G. Roederer, Dynamics of Geomagnetically Trapped Radiation (Springer, New York, 1970)

    Book  Google Scholar 

  • M. Samara, R.G. Michell, Ground-based observations of diffuse auroral frequencies in the context of whistler mode chorus. J. Geophys. Res. 115, A00F18 (2010). doi:10.1029/2009JA014852

    Article  ADS  Google Scholar 

  • M. Samara, R.G. Michell, K. Asamura, M. Hirahara, D.L. Hampton, H.C. Stenbaek-Nielsen, Ground-based observations of diffuse auroral structures in conjunction with Reimei measurements. Ann. Geophys. 28, 873–881 (2010)

    Article  ADS  Google Scholar 

  • B.P. Sandford, Variations of auroral emissions with time, magnetic activity and the solar cycle. J. Atmos. Terr. Phys. 30, 1921–1942 (1968)

    Article  ADS  Google Scholar 

  • O. Santolík, D.A. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, Spatio-temporal structure of storm-time chorus. J. Geophys. Res. 108(A7), 1278 (2003). doi:10.1029/2002JA009791

    Article  Google Scholar 

  • O. Santolík, D.A. Gurnett, J.S. Pickett, J. Chum, N. Cornilleau-Wehrlin, Oblique propagation of whistler mode waves in the chorus source region. J. Geophys. Res. 114, A00F03 (2009). doi:10.1029/2009JA014586

    ADS  Google Scholar 

  • N. Sato, D.M. Wright, C.W. Carlson, Y. Ebihara, M. Sato, T. Saemundsson, S.E. Milan, M. Lester, Generation region of pulsating aurora obtained simultaneously by the FAST satellite and a Syowa-Iceland conjugate pair of observatories. J. Geophys. Res. 109, A10201 (2004). doi:10.1029/2004JA010419

    Article  ADS  Google Scholar 

  • M. Schulz, Particle drift and loss rates under strong pitch angle diffusion in Dungey’s model magnetosphere. J. Geophys. Res. 103(A1), 61–67 (1998)

    Article  ADS  Google Scholar 

  • M. Schulz, L.J. Lanzerotti, Particle Diffusion in the Radiation Belts. Physics and Chemistry in Space (Springer, New York, 1974)

    Book  Google Scholar 

  • V.A. Sergeev, E. Sazhina, N. Tsyganenko, J. Lundblad, F. Soraas, Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planet. Space Sci. 31, 1147–1155 (1983)

    Article  ADS  Google Scholar 

  • V. Sergeev, V. Angelopoulos, S. Apatenkov, J. Bonnell, R. Ergun, R. Nakamura, J. McFadden, D. Larson, A. Runov, Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett. 36, L21105 (2009). doi:10.1029/2009GL040658

    Article  ADS  Google Scholar 

  • R.R. Shaw, D.A. Gurnett, Electrostatic noise bands associated with the electron gyrofrequency and plasma frequency in the outer magnetosphere. J. Geophys. Res. 80(31), 4259–4271 (1975). doi:10.1029/JA080i031p04259

    Article  ADS  Google Scholar 

  • R. Shi, D. Han, B. Ni, Z.-J. Hu, C. Zhou, X. Gu, Intensification of dayside diffuse auroral precipitation: contribution of dayside whistler-mode chorus waves in realistic magnetic fields. Ann. Geophys. 30, 1297–1307 (2012). doi:10.5194/angeo-30-1297-2012

    Article  ADS  Google Scholar 

  • R. Shi, Z.-J. Hu, B. Ni, D. Han, X. Chen, C. Zhou, X. Gu, Modulation of the dayside diffuse auroral intensity by the solar wind dynamic pressure. J. Geophys. Res. Space Phys. 119, 10092–10099 (2014). doi:10.1002/2014JA020180

    Article  ADS  Google Scholar 

  • Y.Y. Shprits, B. Ni, Dependence of the quasi-linear scattering rates on the wave normal distribution of chorus waves. J. Geophys. Res. 114, A11205 (2009). doi:10.1029/2009JA014223

    ADS  Google Scholar 

  • Y.Y. Shprits, W. Li, R.M. Thorne, Controlling effect of the pitch-angle scattering rates near the edge of the loss cone on electron lifetimes. J. Geophys. Res. 111, A12206 (2006a). doi:10.1029/2006JA011758

    Article  ADS  Google Scholar 

  • Y.Y. Shprits, R.M. Thorne, R.B. Horne, D. Summers, Bounce-averaged diffusion coefficients for field-aligned chorus waves. J. Geophys. Res. 111, A10225 (2006b). doi:10.1029/2006JA011725

    Article  ADS  Google Scholar 

  • Y.Y. Shprits, S. Elkington, N.P. Meredith, D.A. Subbotin, Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: radial transport. J. Atmos. Sol.-Terr. Phys. 70, 1679–1693 (2008a). doi:10.1016/j.jastp.2008.06.008

    Article  ADS  Google Scholar 

  • Y.Y. Shprits, D.A. Subbotin, N.P. Meredith, S. Elkington, Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: local acceleration and loss. J. Atmos. Sol.-Terr. Phys. 70, 1694–1713 (2008b). doi:10.1016/j.jastp.2008.06.014

    Article  ADS  Google Scholar 

  • Y.Y. Shprits, D. Subbotin, B. Ni, Evolution of electron fluxes in the outer radiation belt computed with the VERB code. J. Geophys. Res. 114, A11209 (2009). doi:10.1029/2008JA013784

    Article  ADS  Google Scholar 

  • A.R. Soto-Chavez, G. Wang, A. Bhattacharjee, G.Y. Fu, H.M. Smith, A model for falling-tone chorus. Geophys. Res. Lett. 41, 1838–1845 (2014). doi:10.1002/2014GL059320

    Article  ADS  Google Scholar 

  • D. Steele, D. McEwen, Electron auroral excitation efficiencies and intensity ratios. J. Geophys. Res. 95(A7), 10321–10336 (1990)

    Article  ADS  Google Scholar 

  • T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962)

    MATH  Google Scholar 

  • Z. Su, H. Zheng, S. Wang, Evolution of electron pitch angle distribution due to interactions with whistler mode chorus following substorm injections. J. Geophys. Res. 114, A08202 (2009). doi:10.1029/2009JA014269

    ADS  Google Scholar 

  • D. Summers, Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere. J. Geophys. Res. 110, A08213 (2005). doi:10.1029/2005JA011159

    Article  ADS  Google Scholar 

  • D. Summers, R.M. Thorne, Relativistic electron pitch angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 108(A4), 1143 (2003). doi:10.1029/2002JA009489

    Article  Google Scholar 

  • D. Summers, R.M. Thorne, F. Xiao, Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J. Geophys. Res. 103(A9), 20487–20500 (1998). doi:10.1029/98JA01740

    Article  ADS  Google Scholar 

  • D. Summers, B. Ni, N.P. Meredith, Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J. Geophys. Res. 112, A04207 (2007). doi:10.1029/2006JA011993

    ADS  Google Scholar 

  • D.W. Swift, Mechanisms for auroral precipitation: a review. Rev. Geophys. 19(1), 185–211 (1981)

    Article  ADS  Google Scholar 

  • X. Tao, R.M. Thorne, W. Li, B. Ni, N.P. Meredith, R.B. Horne, Evolution of electron pitch angle distributions following injection from the plasma sheet. J. Geophys. Res. 116, A04229 (2011). doi:10.1029/2010JA016245

    ADS  Google Scholar 

  • R.M. Thorne, R. Horne, The contribution of ion-cyclotron waves to electron heating and SAR-arc excitation near the stormtime plasmapause. Geophys. Res. Lett. 19, 417–420 (1992). doi:10.1029/92GL00089

    Article  ADS  Google Scholar 

  • R.M. Thorne, R. Horne, Modulation of electromagnetic ion cyclotron instability due to interaction with ring current \(\mathrm{O}+\) during magnetic storms. J. Geophys. Res. 102(A7), 14155–14163 (1997). doi:10.1029/96JA04019

    Article  ADS  Google Scholar 

  • R.M. Thorne, C.F. Kennel, Relativistic electron precipitation during magnetic storm main phase. J. Geophys. Res. 76(19), 4446–4453 (1971). doi:10.1029/JA076i019p04446

    Article  ADS  Google Scholar 

  • R.M. Thorne, B. Ni, X. Tao, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467 (2010). doi:10.1038/nature09467

  • R.M. Thorne, W. Li, B. Ni, Q. Ma, J. Bortnik, L. Chen, D.N. Baker, H.E. Spence, G.D. Reeves, M.G. Henderson, C.A. Kletzing, W.S. Kurth, G.B. Hospodarsky, J.B. Blake, J.F. Fennell, S.G. Claudepierre, Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature 504, 411–414 (2013a). doi:10.1038/nature12889

    Article  ADS  Google Scholar 

  • R.M. Thorne, B. Ni, X. Tao, L. Chen, W. Li, N.P. Meredith, R.B. Horne, Y.Y. Shprits, Correction to “Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves”, ”Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves”, and ”Evolution of pitch-angle distributions following injection from the plasma sheet”. J. Geophys. Res. Space Phys. 118, 839–842 (2013b). doi:10.1002/jgra.50154

    Article  ADS  Google Scholar 

  • K. Tsuruda et al., Correlations between the very low frequency chorus and pulsating aurora observed by low-light-level television at \(\mathrm{L}=4.4\). Can. J. Phys. 59, 1042–1048 (1981). doi:10.1139/p81-137

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, E.J. Smith, Postmidnight chorus: a substorm phenomenon. J. Geophys. Res. 79(1), 118–127 (1974). doi:10.1029/JA079i001p00118

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, E.J. Smith, Two types of magnetospheric ELF chorus and their substorm dependences. J. Geophys. Res. 82(32), 5112–5128 (1977). doi:10.1029/JA082i032p05112

    Article  ADS  Google Scholar 

  • N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. J. Geophys. Res. 107(A8), 1179 (2002a). doi:10.1029/2001JA000219

    Google Scholar 

  • N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry: 2. Parameterization and fitting to observations. J. Geophys. Res. 107(A8), 1176 (2002b). doi:10.1029/2001JA000220

    Google Scholar 

  • M.E. Usanova et al., Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation. J. Geophys. Res. 115, A07208 (2010). doi:10.1029/2009JA014935

    Article  ADS  Google Scholar 

  • M.E. Usanova, I.R. Mann, J. Bortnik, L. Shao, V. Angelopoulos, THEMIS observations of electromagnetic ion cyclotron wave occurrence: dependence on AE, SYMH, and solar wind dynamic pressure. J. Geophys. Res. 117, A10218 (2012). doi:10.1029/2012JA018049

    Article  ADS  Google Scholar 

  • E. Villalón, W.J. Burke, Pitch angle scattering of diffuse auroral electrons by whistler mode waves. J. Geophys. Res. 100(A10), 19361–19369 (1995)

    Article  ADS  Google Scholar 

  • A.D.M. Walker, Plasma Waves in the Magnetosphere (Springer, New York, 1993)

    Book  Google Scholar 

  • M. Walt, Introduction to Geomagnetically Trapped Radiation (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  • J.D. Winningham, C.D. Anger, G.G. Shepherd, E.J. Weber, R.A. Wagner, A case study of the aurora, high-latitude ionosphere, and particle precipitation during near-steady state conditions. J. Geophys. Res. 83, 5717–5731 (1978)

    Article  ADS  Google Scholar 

  • T. Yamamoto, On the temporal fluctuations of pulsating auroral luminosity. J. Geophys. Res. 93, 897–911 (1988)

    Article  ADS  Google Scholar 

  • A.W. Yau et al., Rocket-borne measurements of particle pulsation in pulsating aurora. J. Geophys. Res. 86, 5673–5681 (1981)

    Article  ADS  Google Scholar 

  • T.S.T. Young, J.D. Callen, J.E. McCune, High-frequency electrostatic waves in the magnetosphere. J. Geophys. Res. 78(7), 1082–1099 (1973). doi:10.1029/JA078i007p01082

    Article  ADS  Google Scholar 

  • X. Yu, Z. Yuan, D. Wang, H. Li, S. Huang, Z. Wang, Q. Zheng, M. Zhou, C.A. Kletzing, J.R. Wygant, In situ observations of EMIC waves in \(\mathrm{O}+\) band by the Van Allen Probe A. Geophys. Res. Lett. 42, 1312–1317 (2015). doi:10.1002/2015GL063250

    Article  ADS  Google Scholar 

  • X. Zhang, V. Angelopoulos, On the relationship of electrostatic cyclotron harmonic emissions with electron injections and dipolarization fronts. J. Geophys. Res. Space Phys. 119 (2014). doi:10.1002/2013JA019540

  • J.-C. Zhang, L.M. Kistler, C.G. Mouikis, M.W. Dumlop, B. Klecker, J.-A. Sauvaud, A case study of EMIC wave-associated He+ energization in the outer magnetosphere: cluster and Double Star 1 observations. J. Geophys. Res. 115, A06212 (2010). doi:10.1029/2009JA014784

    ADS  Google Scholar 

  • J.-C. Zhang, L.M. Kistler, C.G. Mouikis, B. Klecker, J.-A. Sauvaud, M.W. Dumlop, A statistical study of EMIC wave-associated He+ energization in the outer magnetosphere: cluster/CODIF observations. J. Geophys. Res. 116, A11201 (2011). doi:10.1029/2011JA016690

    Article  ADS  Google Scholar 

  • X. Zhang, V. Angelopoulos, B. Ni, R.M. Thorne, R.B. Horne, Quasi-steady, marginally unstable electron cyclotron harmonic wave amplitudes. J. Geophys. Res. Space Phys. 118, 3165–3172 (2013). doi:10.1002/jgra.50319

    Article  ADS  Google Scholar 

  • X. Zhang, V. Angelopoulos, B. Ni, R.M. Thorne, R.B. Horne, Extent of ECH wave emissions in Earth’s magnetotail. J. Geophys. Res. 119, 5561–5574 (2014). doi:10.1002/2014JA019931

    Article  Google Scholar 

  • X. Zhang, V. Angelopoulos, B. Ni, R.M. Thorne, Predominance of ECH wave contribution to diffuse aurora in Earth’s outer magnetosphere. J. Geophys. Res. Space Phys. 120, 295–309 (2015). doi:10.1002/2014JA020455

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the NSFC grants 41204120, 41474141, 41474139 and 41274167, from the Fundamental Research Funds for the Central Universities grant 2042014kf0251 and 2042014kf0269, from the Project funded by the SOA Key Laboratory for Polar Science, and from the Project Supported by the Specialized Research Fund for State Key Laboratories. B. Ni thanks Jun Liang, Xing Cao, Vassilis Angelopoulos, Yuri Shprits, Richard Horne, Nigel Meredith, Eric Donovan, Wen Li, Yukitoshi Nishimura, Emma Spanswick, Marina Kubyshkina, Dirk Lummerzheim, Yusuke Ebihara, Allan Weatherwax, and Yoshizumi Miyoshi for valuable discussions and comments. BN also thanks Xing Cao for helping with the production of Figs. 16 and 17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binbin Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, B., Thorne, R.M., Zhang, X. et al. Origins of the Earth’s Diffuse Auroral Precipitation. Space Sci Rev 200, 205–259 (2016). https://doi.org/10.1007/s11214-016-0234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0234-7

Keywords

Navigation