Skip to main content
Log in

Average Subsurface Flows of Active and Quiet Regions with Large-Tile Ring-Diagram Analysis

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study large-scale subsurface flows associated with locations of high and low magnetic activity in the near-surface shear layer (NSSL). The flows were derived with ring-diagram analysis applied to Helioseismic and Magnetic Imager (HMI) Dopplergrams using 30 tiles. The zonal and meridional flows of the high- and low-activity subsets show the expected variation with the solar cycle with the low-activity subset showing flow precursors of cycle activity. We then focus on temporal averages of these flows. The average zonal flow of the high-activity subset is faster than that of the low-activity one at 0 and 15, while they are about the same size at 30 latitude. The amplitudes of the average meridional flow of the high-activity subset is smaller than those of the low-activity one at 30 and comparable at 15 latitude. The differences between the high- and low-activity subsets indicate the contribution of active regions to the flow pattern. The extra zonal flow of active regions increases with increasing depth, while the extra meridional flow converges near locations of activity. The converging flow is strongest at depths less than about 5 Mm, decreases with increasing depth, and is rather constant at depths greater than about 10 Mm. We then calculate the radial gradients of both flow components and find that those of the high-activity subset are generally more negative than those of the low-activity one. The extra radial gradients of active regions are about the same for both flow components, while the radial gradient of the zonal flow is about one order of magnitude larger than that of the meridional flow. Finally, we determine the radial extent of the NSSL using the radial gradient of the zonal flow and find that the NSSL extends to about 29 Mm at high-activity locations compared to 35 Mm at low-activity ones, or to about 83% of its depth at low-activity locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data Availability

The raw data supporting the conclusion of this article will be made available by the author, without undue reservation.

References

  • Antia, H.M., Basu, S.: 2022, Changes in the near-surface shear layer of the Sun. Astrophys. J. 924, 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baldner, C.S., Schou, J.: 2012, Effects of asymmetric flows in solar convection on oscillation modes. Astrophys. J. Lett. 760, L1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Basu, S., Antia, H.M., Bogart, R.S.: 2004, Ring-diagram analysis of the structure of solar active regions. Astrophys. J. 610, 1157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bogart, R.S., Baldner, C., Basu, S., Haber, D.A., Rabello-Soares, M.C.: 2011a, HMI ring diagram analysis I. The processing pipeline. J. Phys. Conf. Ser. 271, 012008. DOI. ADS.

    Article  Google Scholar 

  • Bogart, R.S., Baldner, C., Basu, S., Haber, D.A., Rabello-Soares, M.C.: 2011b, HMI ring diagram analysis II. Data products. J. Phys. Conf. Ser. 271, 012009. DOI. ADS.

    Article  Google Scholar 

  • Brandenburg, A.: 2005, The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539. DOI. ADS.

    Article  ADS  Google Scholar 

  • Braun, D.C.: 2019, Flows around averaged solar active regions. Astrophys. J. 873, 94. DOI. ADS.

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2020, Dynamo models of the solar cycle. Living Rev. Solar Phys. 17, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, R., Zhao, J.: 2017, A comprehensive method to measure solar meridional circulation and the center-to-limb effect using time-distance helioseismology. Astrophys. J. 849, 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Corbard, T., Toner, C., Hill, F., Hanna, K.D., Haber, D.A., Hindman, B.W., Bogart, R.S.: 2003, Ring-diagram analysis with GONG++. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future, ESA SP 517, 255. ADS.

    Google Scholar 

  • Dikpati, M., Gilman, P.A.: 2009, Flux-transport solar dynamos. Space Sci. Rev. 144, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Getling, A.V., Kosovichev, A.G., Zhao, J.: 2021, Evolution of subsurface zonal and meridional flows in solar cycle 24 from helioseismological data. Astrophys. J. Lett. 908, L50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A.C.: 2005, Local helioseismology. Living Rev. Solar Phys. 2, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • González Hernández, I., Komm, R., Hill, F., Howe, R., Corbard, T., Haber, D.A.: 2006, Meridional circulation variability from large-aperture ring-diagram analysis of global oscillation network group and Michelson Doppler imager data. Astrophys. J. 638, 576. DOI. ADS.

    Article  ADS  Google Scholar 

  • González Hernández, I., Howe, R., Komm, R., Hill, F.: 2010, Meridional circulation during the extended solar minimum: another component of the torsional oscillation? Astrophys. J. Lett. 713, L16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Thompson, M.J., Hill, F.: 2000, Solar shear flows deduced from helioseismic dense-pack samplings of ring diagrams. Solar Phys. 192, 335. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M., Hill, F.: 2002, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haber, D.A., Hindman, B.W., Toomre, J., Thompson, M.J.: 2004, Organized subsurface flows near active regions. Solar Phys. 220, 371. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hill, F.: 1988, Rings and trumpets—three-dimensional power spectra of solar oscillations. Astrophys. J. 333, 996. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.F.: 1996, Solar active regions as diagnostics of subsurface conditions. Annu. Rev. Astron. Astrophys. 34, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R.: 2009, Solar interior rotation and its variation. Living Rev. Solar Phys. 6, 1. DOIADS.

    Article  ADS  Google Scholar 

  • Howe, R., Hill, F., Komm, R., Chaplin, W.J., Elsworth, Y., Davies, G.R., Schou, J., Thompson, M.J.: 2018, Signatures of solar cycle 25 in subsurface zonal flows. Astrophys. J. Lett. 862, L5.

    Article  ADS  Google Scholar 

  • Jain, K., Tripathy, S.C., Hill, F.: 2017, Probing subsurface flows in NOAA active region 12192: comparison with NOAA 10486. Astrophys. J. 849, 94. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jain, K., Tripathy, S.C., Ravindra, B., Komm, R., Hill, F.: 2016, Horizontal flows in active regions from ring-diagram and local correlation tracking methods. Astrophys. J. 816, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kitchatinov, L.L.: 2016, Rotational shear near the solar surface as a probe for subphotospheric magnetic fields. Astron. Lett. 42, 339. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R.: 2021, Subsurface horizontal flows during solar cycles 24 and 25 with large-tile ring-diagram analysis. Solar Phys. 296, 174. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R.: 2022a, Is the subsurface meridional flow zero at the equator? Solar Phys. 297, 99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R.: 2022b, Radial gradient of the solar rotation rate in the near-surface shear layer of the Sun. Front. Astron. Space Sci. 9, 1017414. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2017, Solar-cycle variation of subsurface-flow divergence: a proxy of magnetic activity? Solar Phys. 292, 122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2018, Subsurface zonal and meridional flow during cycles 23 and 24. Solar Phys. 293, 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2020, Solar-cycle variation of the subsurface flows of active- and quiet-region subsets. Solar Phys. 295, 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2021, Divergence and vorticity of subsurface flows during solar cycles 23 and 24. Solar Phys. 296, 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F., González-Hernández, I., Toner, C., Corbard, T.: 2005, Ring analysis of solar subsurface flows and their relation to surface magnetic activity. Astrophys. J. 631, 636. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., González Hernández, I., Howe, R., Hill, F.: 2015a, Solar-cycle variation of subsurface meridional flow derived with ring-diagram analysis. Solar Phys. 290, 3113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., González Hernández, I., Howe, R., Hill, F.: 2015b, Subsurface zonal and meridional flow derived from GONG and SDO/HMI: a comparison of systematics. Solar Phys. 290, 1081. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Schou, J., Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Aloise, J., Bacon, L., Burnette, A., de Forest, C., Giles, P.M., Leibrand, K., Nigam, R., Rubin, M., Scott, K., Williams, S.D., Basu, S., Christensen-Dalsgaard, J., Dappen, W., Rhodes, J.E.J., Duvall, J.T.L., Howe, R., Thompson, M.J., Gough, D.O., Sekii, T., Toomre, J., Tarbell, T.D., Title, A.M., Mathur, D., Morrison, M., Saba, J.L.R., Wolfson, C.J., Zayer, I., Milford, P.N.: 1997, Structure and rotation of the solar interior: initial results from the MDI medium-l program. Solar Phys. 170, 43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lekshmi, B., Nandy, D., Antia, H.M.: 2019, Hemispheric asymmetry in meridional flow and the sunspot cycle. Mon. Not. Roy. Astron. Soc. 489, 714. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Zhao, J., Schuck, P.W.: 2013, Horizontal flows in the photosphere and subphotosphere of two active regions. Solar Phys. 287, 279. DOI. ADS.

    Article  ADS  Google Scholar 

  • Löptien, B., Birch, A.C., Duvall, T.L., Gizon, L., Proxauf, B., Schou, J.: 2017, Measuring solar active region inflows with local correlation tracking of granulation. Astron. Astrophys. 606, A28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The solar dynamics observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pipin, V.V., Kosovichev, A.G.: 2011, The subsurface-shear-shaped solar \(\alpha \Omega \) dynamo. Astrophys. J. Lett. 727, L45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Proxauf, B., Gizon, L., Löptien, B., Schou, J., Birch, A.C., Bogart, R.S.: 2020, Exploring the latitude and depth dependence of solar Rossby waves using ring-diagram analysis. Astron. Astrophys. 634, A44. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rabello-Soares, M.C., Bogart, R.S., Scherrer, P.H.: 2016, Statistical analysis of acoustic wave parameters near solar active regions. Astrophys. J. 827, 140. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rhodes, J., Edward, J., Cacciani, A., Korzennik, S., Tomczyk, S., Ulrich, R.K., Woodard, M.F.: 1990, Depth and latitude dependence of the solar internal angular velocity. Astrophys. J. 351, 687. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., Christensen-Dalsgaard, J., Di Mauro, M.P., Dziembowski, W.A., Eff-Darwich, A., Gough, D.O., Haber, D.A., Hoeksema, J.T., Howe, R., Korzennik, S.G., Kosovichev, A.G., Larsen, R.M., Pijpers, F.P., Scherrer, P.H., Sekii, T., Tarbell, T.D., Title, A.M., Thompson, M.J., Toomre, J.: 1998, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler imager. Astrophys. J. 505, 390. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Solar Phys. 275, 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2008, Tracking vector magnetograms with the magnetic induction equation. Astrophys. J. 683, 1134. DOI. ADS.

    Article  ADS  Google Scholar 

  • Snodgrass, H.B.: 1984, Separation of large-scale photospheric Doppler patterns. Solar Phys. 94, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, M.J., Toomre, J., Anderson, E.R., Antia, H.M., Berthomieu, G., Burtonclay, D., Chitre, S.M., Christensen-Dalsgaard, J., Corbard, T., De Rosa, M., Genovese, C.R., Gough, D.O., Haber, D.A., Harvey, J.W., Hill, F., Howe, R., Korzennik, S.G., Kosovichev, A.G., Leibacher, J.W., Pijpers, F.P., Provost, J., Rhodes, E.J. Jr., Schou, J., Sekii, T., Stark, P.B. Wilson, P.R.: 1996, Differential rotation and dynamics of the solar interior. Science 272, 1300. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Z., Jiang, J.: 2022, A Babcock–Leighton-type solar dynamo operating in the bulk of the convection zone. Astrophys. J. 930, 30. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, J., Chen, R.: 2020, Helioseismic center-to-limb effect and measured travel-time asymmetries around sunspots. In: Monteiro, M.J.P.F.G., García, R.A., Christensen-Dalsgaard, J., McIntosh, S.W. (eds.) Dynamics of the Sun and Stars; Honoring the Life and Work of Michael J. Thompson, Astrophys. Space Sci. Proc. 57, 123. DOI. ADS.

    Chapter  Google Scholar 

Download references

Acknowledgments

The data used here are courtesy of NASA/SDO and the HMI Science Team. SDO is a mission for NASA’s Living With a Star program. This work also utilizes GONG data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. The author thanks the reviewer for helpful comments and suggestions.

Funding

This work was supported by NASA grants 80NSSC19K0261 and 80NSSC20K0194 to the National Solar Observatory and by NASA grant 80NSSC22M0162 to Stanford University.

Author information

Authors and Affiliations

Authors

Contributions

The author is solely responsible for the study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to R. Komm.

Ethics declarations

Conflict of Interest

The author declares that he has no conflicts of interest.

Competing interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komm, R. Average Subsurface Flows of Active and Quiet Regions with Large-Tile Ring-Diagram Analysis. Sol Phys 298, 119 (2023). https://doi.org/10.1007/s11207-023-02213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02213-7

Keywords

Navigation