Skip to main content
Log in

Automated Sunspot Detection as an Alternative to Visual Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We developed an automated method for sunspot detection using digital white-light solar images to achieve a performance similar to that of visual drawing observations in sunspot counting. To identify down to small, isolated spots correctly, we pay special attention to the accurate derivation of the quiet-disk component of the Sun, which is used as a reference to identify sunspots using a threshold. This threshold is determined using an adaptive method to process images obtained under various conditions. To eliminate the seeing effect, our method can process multiple images taken within a short time. We applied the developed method to digital images captured at three sites and compared the detection results with those of visual observations. We conclude that the proposed sunspot detection method has a similar performance to that of visual observation. This method can be widely used by public observatories and amateurs as well as professional observatories as an alternative to hand-drawn visual observation for sunspot counting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Aschwanden, M.J.: 2010, Image processing techniques and feature recognition in solar physics. Solar Phys. 262, 235. DOI. ADS.

    Article  ADS  Google Scholar 

  • Beck, J.G., Chapman, G.A.: 1993, A study of the contrast of sunspots from photometric images. Solar Phys. 146, 49. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carvalho, S., Gomes, S., Barata, T., Lourenço, A., Peixinho, N.: 2020, Comparison of automatic methods to detect sunspots in the Coimbra observatory spectroheliograms. Astron. Comput. 32, 100385. DOI. ADS.

    Article  Google Scholar 

  • Chapman, G.A.: 1994, Photometric observations of the sun. In: Pap, J.M., Frohlich, C., Hudson, H.S., Solanki, S.K. (eds.) Invited Papers from IAU Colloquium 143: The Sun as a Variable Star: Solar and Stellar Irradiance Variations, 117. ADS.

    Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the Solar cycle. Space Sci. Rev. 186, 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Colak, T., Qahwaji, R.: 2008, Automated McIntosh-based classification of sunspot groups using MDI images. Solar Phys. 248, 277. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cortesi, S., Cagnotti, M., Bianda, M., Ramelli, R., Manna, A.: 2016, Sunspot observations and counting at Specola Solare Ticinese in Locarno since 1957. Solar Phys. 291, 3075. DOI. ADS.

    Article  ADS  Google Scholar 

  • Curto, J.J., Blanca, M., Martínez, E.: 2008, Automatic sunspots detection on full-disk solar images using mathematical morphology. Solar Phys. 250, 411. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goel, S., Mathew, S.K.: 2014, Automated detection, characterization, and tracking of sunspots from SoHO/MDI continuum images. Solar Phys. 289, 1413. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hanaoka, Y., Sakurai, T., Otsuji, K., Suzuki, I., Morita, S.: 2020, Synoptic solar observations of the Solar Flare Telescope focusing on space weather. J. Space Weather Space Clim. 10, 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Imai, H., Suematsu, Y., Miyashita, M., Kumagai, K.: 1998, Development of automatic detection and reduction system for sunspots and faculae. Rep. Nat. Astron. Observ. Japan 4, 1. ADS.

    Google Scholar 

  • Pierce, A.K., Slaughter, C.D.: 1977, Solar limb darkening. I: lambda lambda (3033 – 7297). Solar Phys. 51, 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Preminger, D.G., Walton, S.R., Chapman, G.A.: 2001, Solar feature identification using contrasts and contiguity. Solar Phys. 202, 53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sakurai, T., Suematsu, Y.: 2002, Observational studies of the solar cycle at the National Astronomical Observatory of Japan. Adv. Space Res. 29, 1565. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sakurai, T., Ichimoto, K., Nishino, Y., Shinoda, K., Noguchi, M., Hiei, E., Li, T., He, F., Mao, W., Lu, H., Ai, G., Zhao, Z., Kawakami, S., Chae, J.-C.: 1995, Solar Flare Telescope at Mitaka. Publ. Astron. Soc. Japan 47, 81. ADS.

    ADS  Google Scholar 

  • Sakurai, T., Hanaoka, Y., Arai, T., Hagino, M., Kawate, T., Kitagawa, N., Kobiki, T., Miyashita, M., Morita, S., Otsuji, K., Shinoda, K., Suzuki, I., Yaji, K., Yamasaki, T., Fukuda, T., Noguchi, M., Takeyama, N., Kanai, Y., Yamamuro, T.: 2018, Infrared spectro-polarimeter on the Solar Flare Telescope at NAOJ/Mitaka. Publ. Astron. Soc. Japan 70, 58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Steinegger, M., Brandt, P.N., Haupt, H.F.: 1996, Sunspot irradiance deficit, facular excess, and the energy balance of solar active regions. Astron. Astrophys. 310, 635. ADS.

    ADS  Google Scholar 

  • Steinegger, M., Brandt, P.N., Pap, J., Schmidt, W.: 1990, Sunspot photometry and the total solar irradiance deficit measured in 1980 BY ACRIM. Astrophys. Space Sci. 170, 127. DOI. ADS.

    Article  ADS  Google Scholar 

  • Turmon, M., Pap, J.M., Mukhtar, S.: 2002, Statistical pattern recognition for labeling solar active regions: application to SOHO/MDI imagery. Astrophys. J. 568, 396. DOI. ADS.

    Article  ADS  Google Scholar 

  • Watson, F., Fletcher, L., Dalla, S., Marshall, S.: 2009, Modelling the longitudinal asymmetry in sunspot emergence: the role of the Wilson depression. Solar Phys. 260, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, Y., Yang, H., Bai, X., Zhou, H., Feng, S., Liang, B.: 2018, Automatic detection of sunspots on full-disk solar images using the simulated annealing genetic method. Publ. Astron. Soc. Pac. 130, 104503. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, C., Lin, G., Deng, Y., Yang, X.: 2016, Automatic recognition of sunspots in HSOS full-disk solar images. Publ. Astron. Soc. Aust. 33, e018. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zharkov, S., Zharkova, V.V., Ipson, S.S.: 2005, Statistical properties of sunspots in 1996 2004: I. Detection, North South asymmetry and area distribution. Solar Phys. 228, 377. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Ipson, S.S., Zharkov, S.I., Benkhalil, A., Aboudarham, J., Bentley, R.D.: 2003, A full-disk image standardisation of the synoptic solar observations at the Meudon Observatory. Solar Phys. 214, 89. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the Kawaguchi Science Museum and Mr. S. Morita, who provided digital white-light images of the Sun. The Specola Solare Ticinese and Kwasan Observatory kindly permitted us to use their visual sunspot observation data for our analysis. HMI data used in this study were courtesy of NASA/SDO and the HMI science team. SDO is a mission for NASA’s Living With a Star program. The source of the international sunspot number is WDC-SILSO, Royal Observatory of Belgium, Brussels.

Author information

Authors and Affiliations

Authors

Contributions

Y. H. developed a software for the automated sunspot detection described in the paper, and evaluated its performance. He wrote the manuscript as well.

Corresponding author

Correspondence to Yoichiro Hanaoka.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanaoka, Y. Automated Sunspot Detection as an Alternative to Visual Observations. Sol Phys 297, 158 (2022). https://doi.org/10.1007/s11207-022-02089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02089-z

Keywords

Navigation