Skip to main content
Log in

Dynamics and Characteristics of Waves in the Zebra Radio Source

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyzed the 17 August 1998 zebra event and showed that some quasi-periodic oscillations modulate the zebra-stripe frequencies. We determined the period of these oscillations as \(P_{n} = 2.01 \pm 0.03\) (in numbers of zebra stripes) and as \(P_{\mathrm{f}} = 11.8 \pm 0.17\) MHz. In the first part of the analyzed zebra, we found a stable density wave that slowly propagated with the frequency drift less than 0.4 MHz s−1. Then, a stationary density wave appeared followed by a transformation of the waves to ones with longer periods. These long-period waves were recorded before and after the time interval when no zebra stripes were observed. We interpreted these density waves as magnetosonic waves. We calculated their wavelength and propagating velocity, considering two types of density models of the solar atmosphere. We also estimated the characteristic density and magnetic-field strength as \(N \approx 9.2\times 10^{8}\) cm−1 and \(B \approx 0.73~\mbox{G}\), respectively. We found similar velocities derived from drifts of the density wave and velocities calculated from the density and magnetic-field strength considering gyro-harmonic numbers of zebra stripes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aschwanden, M.J.: 2002, Particle acceleration and kinematics in solar flares – a synthesis of recent observations and theoretical concepts. Space Sci. Rev. 101, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 2006, Solar radio bursts with drifting stripes in emission and absorption. Space Sci. Rev. 127, 195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 2010, Recent results of zebra patterns in solar radio bursts. Res. Astron. Astrophys. 10, 821. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 2011, Fine Structure of Solar Radio Bursts, Springer, Heidelberg, 375. ADS.

    Book  Google Scholar 

  • Kaneda, K., Misawa, H., Iwai, K., Masuda, S., Tsuchiya, F., Katoh, Y., Obara, T.: 2018, Detection of propagating fast sausage waves through detailed analysis of a zebra-pattern fine structure in a solar radio burst. Astrophys. J. Lett. 855, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M.: 2014, Frequency variations of solar radio zebras and their power-law spectra. Astron. Astrophys. 561, A34. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2015, Determination of plasma parameters in solar zebra radio sources. Astron. Astrophys. 581, A115. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2018, Double plasma-resonance surfaces in flare loops and radio zebra emission. Astron. Astrophys. 618, A60. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2019, Zebra-stripe sources in the double-plasma resonance model of solar radio zebras. Astron. Astrophys. 624, A119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2020, Estimating density and magnetic field turbulence in solar flares using radio zebra observations. Astron. Astrophys. 638, A22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2021, Spatial quasi-periodic variations of the plasma density and magnetic field in zebra radio sources. Astron. Astrophys. 646, 179. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuijpers, J.: 1975, Collective wave-particle interactions in solar type IV radio source. Ph.D Thesis, Utrecht University. ADS.

  • Kuijpers, J.: 1980, In: Kundu, M.R., Gergely, T.E. (eds.) Theory of Type IV Dm Bursts, Radio Physics of the Sun, Reidel, Dordrecht, 361. DOI. ADS.

    Chapter  Google Scholar 

  • Mollwo, L.: 1983, Interpretation of patterns of drifting zebra stripes. Solar Phys. 83, 305. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mollwo, L.: 1988, The magneto-hydrostatic field in the region of Zebra patterns in solar type-IV dm-bursts. Solar Phys. 116, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Melnikov, V.F.: 2009, Quasi-periodic pulsations in solar flares. Space Sci. Rev. 149, 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L., DeLuca, E.E., Roberts, B., Davila, J.M.: 1999, TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge, UK. DOI. ADS.

    Book  Google Scholar 

  • Slottje, C.: 1981, Atlas of fine Structures of Dynamic Spectra of Solar Type IV-dm and Some Type II Bursts. Ph.D. Thesis, Utrecht Observatory.

  • Stupishin, A.G., Kaltman, T.I., Bogod, V.M., Yasnov, L.V.: 2018, Modeling of solar atmosphere parameters above sunspots using RATAN-600 microwave observations. Solar Phys. 293, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tan, B., Zhang, Y., Tan, C., Liu, Y.: 2010, Microwave quasi-periodic pulsations in multi-timescales associated with a solar flare/CME event. Astrophys. J. 723, 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Winglee, R.M., Dulk, G.A.: 1986, The electron-cyclotron maser instability as a source of plasma emission. Astrophys. J. 307, 808. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yasnov, L.V.: 2021, On the magnetoacoustic waves and physical conditions in zebra radio sources. Solar Phys. 296, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Chernov, G.P.: 2020, Alternative models of zebra patterns in the event on June 21, 2011. Solar Phys. 295, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Karlický, M.: 2020, Magnetic field, electron density and their spatial scales in zebra pattern radio sources. Solar Phys. 295, 96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Bogod, V.M., Stupishin, A.G.: 2020, Effective gyroresonance layers in the transition region of the active region of the solar atmosphere. Magnetic fields and heights. Astrophys. Bull. 75, 50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yu, S., Yan, Y., Tan, B.: 2012, Relaxation of magnetic field relative to plasma density revealed from microwave zebra patterns associated with solar flares. Astrophys. J. 761, 136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V., Zlotnik, E.Y.: 1975, Cyclotron wave instability in the corona and origin of solar radio emission with fine structure. III. Origin of zebra-pattern. Solar Phys. 44, 461. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zlotnik, E.Y., Zaitsev, V.V., Aurass, H., Mann, G.: 2009, A special radio spectral fine structure used for plasma diagnostics in coronal magnetic traps. Solar Phys. 255, 273. ADS.

    Article  ADS  Google Scholar 

Download references

Funding

L.V. Yasnov acknowledges support from the Russian Foundation for Basic Research, Grant 18-29-21016, and M. Karlický acknowledges support from GA ČR Grant No. 20-07908S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Yasnov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasnov, L.V., Karlický, M. Dynamics and Characteristics of Waves in the Zebra Radio Source. Sol Phys 297, 35 (2022). https://doi.org/10.1007/s11207-022-01950-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-01950-5

Keywords

Navigation