Skip to main content
Log in

Structure of the Transition Region and the Low Corona from TRACE and SDO Observations Near the Limb

  • Published:
Solar Physics Aims and scope Submit manuscript

A Correction to this article was published on 23 October 2019

This article has been updated

Abstract

We examined the structure near the solar limb in TRACE images of the continuum and in the 1600 and 171 Å bands as well as in SDO images in the continuum (from HMI) and all AIA bands. The images in different wavelength bands were carefully coaligned by using the position of Mercury for TRACE and Venus for SDO during their transit in front of the solar disk in 1999 and 2012, respectively. Chromospheric absorbing structures in the TRACE 171-Å band are best visible 7′′ above the white-light limb, very close to the inner limb, defined as the inflection point of the rising part of the center-to-limb intensity variation. They are correlated with, but are not identical to, spicules in emission, seen in the 1600-Å band. Similar results were obtained from AIA and SOT images. Tall spicules in 304 Å are not associated with any absorption in the higher temperature bands. Performing azimuthal averaging of the intensity over 15 sectors near the N, S, E and W limbs, we measured the height of the limb and of the peak intensity in all AIA bands. We found that the inner limb height in the transition region AIA bands increases with wavelength, consistent with a bound–free origin of the absorption from neutral H and He. From that we computed the column density and the density of neutral hydrogen as a function of height. We estimated a height of \((2300\pm 500)~\mbox{km}\) for the base of the transition region. Finally, we measured the scale height of the AIA emission of the corona and associated it with the temperature; we deduced a value of \((1.24\pm 0.25)\times 10^{6}~\mbox{K}\) for the polar corona

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Change history

  • 23 October 2019

    In computing the height with respect to the tau = 1 level, the height difference between the white light limb and that level was subtracted rather than added to the values in Table 4. This affects Sections 3.3 and 3.4, Figures 14 and 15, as well as Table 5. The correct versions are given below.

References

  • Alissandrakis, C.E., Zachariadis, T., Gontikakis, C.: 2005 In: The Dynamic Sun: Challenges for Theory and Observations, ESA, SP-596, 54.

    Google Scholar 

  • Alissandrakis, C.E., Patsourakos, S., Nindos, A., Bastian, T.S.: 2017, Astron. Astrophys. 605, A78. DOI .

    Article  ADS  Google Scholar 

  • Alissandrakis, C.E., Vial, J.-C., Koukras, A., Buchlin, E., Chane-Yook, M.: 2018, Solar Phys. 293, 20. DOI .

    Article  ADS  Google Scholar 

  • Alissandrakis, C.E., Bogod, V.M., Kaltman, T.I., Patsourakos, S., Peterova, N.G.: 2019, Solar Phys. 294, 23. DOI .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Acton, L.W.: 2001, Astrophys. J. 550, 475. DOI .

    Article  ADS  Google Scholar 

  • Athay, R.G.: 1976, The Solar Chromosphere and Corona: Quiet Sun, Astrophysics and Space Science Library 53, Springer, Dordrecht. DOI .

    Book  Google Scholar 

  • Auchere, F., Boulade, S., Koutchmy, S., Smartt, R.N., Delaboudiniere, J.P., Georgakilas, A., Gurman, J.B., Artzner, G.E.: 1998, Astron. Astrophys. 336, L57.

    ADS  Google Scholar 

  • Avrett, E.H., Loeser, R.: 2008, Astrophys. J. Suppl. 175, 229. DOI .

    Article  ADS  Google Scholar 

  • Avrett, E., Tian, H., Landi, E., Curdt, W., Wülser, J.-P.: 2015, Astrophys. J. 811, 87. DOI .

    Article  ADS  Google Scholar 

  • Beckers, J.M.: 1968, Solar Phys. 3, 367. DOI

    Article  ADS  Google Scholar 

  • Beckers, J.M.: 1972, Annu. Rev. Astron. Astrophys. 10, 73. DOI

    Article  ADS  Google Scholar 

  • Boerner, P.F., Testa, P., Warren, H., Weber, M.A., Schrijver, C.J.: 2014, Solar Phys. 289, 2377.

    Article  ADS  Google Scholar 

  • Chiuderi Drago, F., Alissandrakis, C.E., Bastian, T., Bocchialini, K., Harrison, R.A.: 2001, Solar Phys. 199, 115. DOI .

    Article  ADS  Google Scholar 

  • David, C., Gabriel, A.H., Bely-Dubau, F., et al.: 1998, Astron. Astrophys. 336, L90.

    ADS  Google Scholar 

  • Daw, A., Deluca, E.E., Golub, L.: 1995, Astrophys. J. 453, 929. DOI .

    Article  ADS  Google Scholar 

  • Emilio, M., Couvidat, S., Bush, R.I., Kuhn, J.R., Scholl, I.F.: 2015, Astrophys. J. 798, 48. DOI .

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Avrett, E.H., Loeser, R.: 1990, Astrophys. J. 355, 700. DOI .

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Avrett, E.H., Loeser, R.: 1991, Astrophys. J. 377, 712. DOI .

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Avrett, E.H., Loeser, R.: 1993, Astrophys. J. 406, 319. DOI .

    Article  ADS  Google Scholar 

  • Georgakilas, A.A., Koutchmy, S., Alissandrakis, C.E.: 1999, Astron. Astrophys. 341, 610.

    ADS  Google Scholar 

  • Giménez de Castro, C.G., Varela Saraiva, A.C., Costa, J.E.R., Selhorst, C.L.: 2007, Astron. Astrophys. 476, 369. DOI .

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M., Jeffrey, A., Zwillinger, D.: 2007, Table of Integrals, Series, and Products, 7th edn. Elsevier, Amsterdam, ISBN 012-373637-4.

    Google Scholar 

  • Grevesse, N., Asplund, M., Sauval, A.J.: 2007, Space Sci. Rev. 130, 105. DOI .

    Article  ADS  Google Scholar 

  • Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, Solar Phys. 187, 229.

    Article  ADS  Google Scholar 

  • Menezes, F., Valio, A.: 2017, Solar Phys. 292, 195. DOI .

    Article  ADS  Google Scholar 

  • Nindos, A., Alissandrakis, C.E., Bastian, T.S., Patsourakos, S., De Pontieu, B., Warren, H., Ayres, T., Hudson, H.S., Shimizu, T., Vial, J.-C., Wedemeyer, S., Yurchyshyn, V.: 2018, Astron. Astrophys. 619, L6. DOI .

    Article  ADS  Google Scholar 

  • O’Dwyer, B., Del Zanna, G., Mason, H.E., Weber, M.A., Tripathi, D.: 2010, Astron. Astrophys. 521, A21. DOI

    Article  Google Scholar 

  • Poduval, B., DeForest, C.E., Schmelz, J.T., Pathak, S.: 2013, Astrophys. J. 765, 144. DOI .

    Article  ADS  Google Scholar 

  • Reale, F., Gambino, A.F., Micela, G., Maggio, A., Widemann, T., Piccioni, G.: 2015, Nat. Commun. 6, 7563. DOI .

    Article  ADS  Google Scholar 

  • Rozelot, J.P., Kosovichev, A., Kilcik, A.: 2015, Astrophys. J. 812, 91. DOI .

    Article  ADS  Google Scholar 

  • Selhorst, C., Silva, A., Costa, J.: 2004, Astron. Astrophys. 420, 1117. DOI

    Article  ADS  Google Scholar 

  • Tsiropoula, G., Tziotziou, K., Kontogiannis, I., Madjarska, M.S., Doyle, J.G., Suematsu, Y.: 2012, Space Sci. Rev. 169, 181.

    Article  ADS  Google Scholar 

  • Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Astrophys. J. Suppl. 45, 635. DOI .

    Article  ADS  Google Scholar 

  • Verner, D.A., Ferland, G.J., Korista, K.T., Yakovlev, D.G.: 1996, Astrophys. J. 465, 487. DOI .

    Article  ADS  Google Scholar 

  • Wachter, R., Schou, J., Rabello-Soares, M.C., Miles, J.W., Duvall, T.L., Bush, R.I.: 2012, Solar Phys. 275, 261. DOI .

    Article  ADS  Google Scholar 

  • Williams, D.R., Baker, D., van Driel-Gesztelyi, L.: 2013, Astrophys. J. 764, 165. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., White, S.M., Kundu, M.R.: 1998, Astrophys. J. 504, L127. DOI .

    Article  ADS  Google Scholar 

  • Zirin, H.: 1966, The Solar Atmosphere, A Blaisdell Book in the Pure and Applied Sciences. Blaisdell, Waltham.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge use of data from the TRACE, Hinode and SDO (AIA and HMI) databases. They also want to thank S. Patsourakos and A. Nindos for comments on the manuscript and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Alissandrakis.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MP4 865 kB)

Appendix: Relation Between the Column Density, \(N_{c}(h)\), and the Density, \(N(z)\)

Appendix: Relation Between the Column Density, \(N_{c}(h)\), and the Density, \(N(z)\)

Doing a simple geometric transformation we can write Equation 4 in the form

(15)

where \(\ell \), as before, is along the line of sight, \(r\) is the distance from the center of the Sun and \(R_{{\odot }}\) the solar radius. The column density is then, from Equation 2,

(16)

The integral can be computed using the expression \(3.461/6\) in the table of Gradshteyn et al. (2007), p. 364:

$$ \int _{0}^{\infty } \exp \bigl(-a\sqrt{x^{2}+b^{2}} \,\bigr)\,\mathrm{d}x=b K_{1} (ab), $$
(17)

where \(K_{1}\) is the modified Bessel function of the first order. For , \(b=r\), this gives

(18)

Since \(r=R_{{\odot }}+h\), where \(h\) is the distance from the limb, the argument of \(K_{1}\) in Equation 18 is large; we can thus retain the first order term in the expansion of \(K_{\nu }(z)\) for large \(z\) (expression \(8.451/6\) from p. 920 of Gradshteyn et al., 2007),

$$ K_{\nu }(z)\simeq \sqrt{\frac{\pi }{2z}} {\mathrm{e}}^{-z}, $$
(19)

and, substituting in Equation 18, we obtain, finally,

(20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alissandrakis, C.E., Valentino, A. Structure of the Transition Region and the Low Corona from TRACE and SDO Observations Near the Limb. Sol Phys 294, 96 (2019). https://doi.org/10.1007/s11207-019-1486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1486-7

Keywords

Navigation