Skip to main content
Log in

The Relation Between Magnetic Fields and X-ray Emission for Solar Microflares and Active Regions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present the result of a comparison between magnetic field parameters and the intensity of X-ray emission for solar microflares with Geosynchronous Operational Environmental Satellites (GOES) classes from A0.02 to B5.1. For our study, we used the monochromatic MgXII Imaging Spectroheliometer (MISH), the Full-disk EUV Telescope (FET), and the Solar PHotometer in X-rays (SphinX) instruments onboard the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon CORONAS-Photon spacecraft because of their high sensitivity in soft X-rays. The peak flare flux (PFF) for solar microflares was found to depend on the strength of the magnetic field and on the total unsigned magnetic flux as a power-law function. In the spectral range 2.8 – 36.6 Å, which shows very little increase related to microflares, the power-law index of the relation between the X-ray flux and magnetic flux for active regions is \(1.48 \pm0.86\), which is close to the value obtained previously by Pevtsov et al. (Astrophys. J. 598, 1387, 2003) for different types of solar and stellar objects. In the spectral range 1 – 8 Å, the power-law indices for \(\mathrm{PFF}(B)\) and \(\mathrm{PFF}(\Phi)\) for microflares are \(3.87 \pm2.16\) and \(3 \pm1.6\), respectively. We also make suggestions on the heating mechanisms in active regions and microflares under the assumption of loops with constant pressure and heating using the Rosner–Tucker–Vaiana scaling laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Aschwanden, M.J.: 2004, Physics of the Solar Corona. An Introduction, Praxis, Chichester ADS .

    Google Scholar 

  • Benevolenskaya, E.E., Kosovichev, A.G., Lemen, J.R., Scherrer, P.H., Slater, G.L.: 2002, Large-scale solar coronal structures in soft X-rays and their relationship to the magnetic flux. Astrophys. J. Lett. 571, L181. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI – an atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Longcope, D.W., Metcalf, T.R., Pevtsov, A.A.: 1998, Coronal heating in active regions as a function of global magnetic variables. Astrophys. J. 508, 885. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fludra, A., Hornsey, C., Nakariakov, V.M.: 2017, Diagnostics of coronal heating in active-region loops. Astrophys. J. 834, 100. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fludra, A., Ireland, J.: 2008, Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities. Astron. Astrophys. 483, 609. DOI . ADS .

    Article  ADS  Google Scholar 

  • Galsgaard, K., Nordlund, Å.: 1996, Heating and activity of the solar corona 1. Boundary shearing of an initially homogeneous magnetic field. J. Geophys. Res. 101, 13445. DOI . ADS .

    Article  ADS  Google Scholar 

  • Golub, L., Maxson, C., Rosner, R., Vaiana, G.S., Serio, S.: 1980, Magnetic fields and coronal heating. Astrophys. J. 238, 343. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gryciuk, M., Siarkowski, M., Sylwester, J., Gburek, S., Podgorski, P., Kepa, A., Sylwester, B., Mrozek, T.: 2017, Flare characteristics from X-ray light curves. Solar Phys. 292, 77. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kirichenko, A.S., Bogachev, S.A.: 2013, Long-duration plasma heating in solar microflares of X-ray class A1.0 and lower. Astron. Lett. 39, 797. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kirichenko, A.S., Bogachev, S.A.: 2017, Plasma heating in solar microflares: Statistics and analysis. Astrophys. J. 840, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kuzin, S.V., Bogachev, S.A., Zhitnik, I.A., Pertsov, A.A., Ignatiev, A.P., Mitrofanov, A.M., Slemzin, V.A., Shestov, S.V., Sukhodrev, N.K., Bugaenko, O.I.: 2009, TESIS experiment on EUV imaging spectroscopy of the Sun. Adv. Space Res. 43, 1001. DOI . ADS .

    Article  ADS  Google Scholar 

  • Landi, E., Young, P.R., Dere, K.P., Del Zanna, G., Mason, H.E.: 2013, CHIANTI – an atomic database for emission lines. XIII. Soft X-ray improvements and other changes. Astrophys. J. 763, 86. DOI . ADS .

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 1996, Topology and current ribbons: A model for current, reconnection and flaring in a complex, evolving corona. Solar Phys. 169, 91. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Démoulin, P., Klimchuk, J.A.: 2000, Magnetic field and plasma scaling laws: Their implications for coronal heating models. Astrophys. J. 530, 999. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Fisher, G.H., Acton, L.W., Longcope, D.W., Johns-Krull, C.M., Kankelborg, C.C., Metcalf, T.R.: 2003, The relationship between X-ray radiance and magnetic flux. Astrophys. J. 598, 1387. DOI . ADS .

    Article  ADS  Google Scholar 

  • Roald, C.B., Sturrock, P.A., Wolfson, R.: 2000, Coronal heating: Energy release associated with chromospheric magnetic reconnection. Astrophys. J. 538, 960. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rosner, R., Tucker, W.H., Vaiana, G.S.: 1978, Dynamics of the quiescent solar corona. Astrophys. J. 220, 643. DOI . ADS .

    Article  ADS  Google Scholar 

  • Su, Y., Van Ballegooijen, A., McCaughey, J., Deluca, E., Reeves, K.K., Golub, L.: 2007, What determines the intensity of solar flare/CME events? Astrophys. J. 665, 1448. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sylwester, J., Kuzin, S., Kotov, Y.D., Farnik, F., Reale, F.: 2008, SphinX: A fast solar photometer in X-rays. J. Astrophys. Astron. 29, 339. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wolfson, R., Roald, C.B., Sturrock, P.A., Weber, M.A.: 2000, Coronal X-ray brightness and photospheric magnetic field: A study in correlations. Astrophys. J. 539, 995. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yashiro, S., Shibata, K.: 2001, Relation between thermal and magnetic properties of active regions as a probe of coronal heating mechanisms. Astrophys. J. Lett. 550, L113. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (RSF) grant No. 17-12-01567. We also thank the anonymous referee for a careful revision of the work and very useful comments that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kirichenko.

Ethics declarations

Disclosure of Potential Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirichenko, A.S., Bogachev, S.A. The Relation Between Magnetic Fields and X-ray Emission for Solar Microflares and Active Regions. Sol Phys 292, 120 (2017). https://doi.org/10.1007/s11207-017-1146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1146-8

Keywords

Navigation