Skip to main content
Log in

Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer. In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the width of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of \({\approx\,}4~\mbox{Mm}\,\mbox{hr}^{-1}\) and decreases to \({\le\,}1~\mbox{Mm}\,\mbox{hr}^{-1}\) after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and \(3~\mbox{Mm}\,\mbox{hr}^{-1}\), while the thin flux-tube approximation results in an unreasonably high buoyant velocity, consistent with the expectation that the approximation is inappropriate at the surface layer. The observed horizontal motion is not found to directly correlate with either the magnetic field strength or the derived buoyant velocities. However, the percentage of the horizontally oriented fields and the temporal derivatives of the field strength and the buoyant velocity show some positive correlations with the separation velocity. The results of this study imply that the assumption that the emerging active region is the cross section of a rising flux tube whose structure can be considered rigid as it rises through the near-surface layer should be taken with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Notes

  1. http://jsoc.stanford.edu/doc/data/hmi/sharp/sharp.htm .

References

  • Brandenburg, A., Kemel, K., Kleeorin, N., Mitra, D., Rogachevskii, I.: 2011, Detection of negative effective magnetic pressure instability in turbulence simulations. Astrophys. J. Lett. 740, L50. DOI . ADS .

    Article  ADS  Google Scholar 

  • Calabretta, M.R., Greisen, E.W.: 2002, Representations of celestial coordinates in FITS. Astron. Astrophys. 395, 1077. DOI . ADS .

    Article  ADS  Google Scholar 

  • Caligari, P., Moreno-Insertis, F., Schüssler, M.: 1995, Emerging flux tubes in the solar convection zone. 1: Asymmetry, tilt, and emergence latitude. Astrophys. J. 441, 886. DOI . ADS .

    Article  ADS  Google Scholar 

  • Centeno, R.: 2012, The naked emergence of solar active regions observed with SDO/HMI. Astrophys. J. 759, 72. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Isobe, H.: 2014, Flux emergence (theory). Living Rev. Solar Phys. 11, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chintzoglou, G., Zhang, J.: 2013, Reconstructing the subsurface three-dimensional magnetic structure of a solar active region using SDO/HMI observations. Astrophys. J. Lett. 764, L3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chou, D.-Y.: 1993, Structure of emerging flux regions. In: Zirin, H., Ai, G., Wang, H. (eds.) IAU Colloq. 141: The Magnetic and Velocity Fields of Solar Active Regions, Astron. Soc. Pacific C. S. 46, 471. ADS .

    Google Scholar 

  • Chou, D.-Y., Fisher, G.H.: 1989, Dynamics of anchored flux tubes in the convection zone. I – Details of the model. Astrophys. J. 341, 533. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chou, D.-Y., Wang, H.: 1987, The separation velocity of emerging magnetic flux. Solar Phys. 110, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fan, Y.: 2004, Dynamics of emerging flux tubes. In: Sakurai, T., Sekii, T. (eds.) The Solar-B Mission and the Forefront of Solar Physics, Astron. Soc. Pacific C. S. 325, 47. ADS .

    Google Scholar 

  • Fan, Y.: 2008, The three-dimensional evolution of buoyant magnetic flux tubes in a model solar convective envelope. Astrophys. J. 676, 680. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, K.L., Martin, S.F.: 1973, Ephemeral active regions. Solar Phys. 32, 389. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hoeksema, J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K.D., Barnes, G., Turmon, M.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: Overview and performance. Solar Phys. 289, 3483. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kubo, M., Shimizu, T., Lites, B.W.: 2003, The evolution of vector magnetic fields in an emerging flux region. Astrophys. J. 595, 465. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leka, K.D., Canfield, R.C., McClymont, A.N., van Driel-Gesztelyi, L.: 1996, Evidence for current-carrying emerging flux. Astrophys. J. 462, 547. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lites, B.W., Skumanich, A., Martinez Pillet, V.: 1998, Vector magnetic fields of emerging solar flux. I. Properties at the site of emergence. Astron. Astrophys. 333, 1053. ADS .

    ADS  Google Scholar 

  • Metcalf, T.R.: 1994, Resolving the 180-degree ambiguity in vector magnetic field measurements: The ‘minimum’ energy solution. Solar Phys. 155, 235. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1955, The formation of sunspots from the solar toroidal field. Astrophys. J. 121, 491. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1978, Hydraulic concentration of magnetic fields in the solar photosphere. VI – Adiabatic cooling and concentration in downdrafts. Astrophys. J. 221, 368. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rempel, M.: 2011, Subsurface magnetic field and flow structure of simulated sunspots. Astrophys. J. 740, 15. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rempel, M., Cheung, M.C.M.: 2014, Numerical simulations of active region scale flux emergence: From spot formation to decay. Astrophys. J. 785, 90. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schüssler, M.: 1979, Magnetic buoyancy revisited – Analytical and numerical results for rising flux tubes. Astron. Astrophys. 71, 79. ADS .

    ADS  Google Scholar 

  • Shimizu, T., Shine, R.A., Title, A.M., Tarbell, T.D., Frank, Z.: 2002, Photospheric magnetic activities responsible for soft X-ray pointlike microflares. I. Identifications of associated photospheric/chromospheric activities. Astrophys. J. 574, 1074. DOI . ADS .

    Article  ADS  Google Scholar 

  • Strous, L.H., Scharmer, G., Tarbell, T.D., Title, A.M., Zwaan, C.: 1996, Phenomena in an emerging active region. I. Horizontal dynamics. Astron. Astrophys. 306, 947. ADS .

    ADS  Google Scholar 

  • Sun, X.: 2013, On the coordinate System of Space-Weather HMI Active Region Patches (SHARPs): A technical note. ArXiv e-prints. arXiv .

  • Tanaka, K.: 1991, Studies on a very flare-active delta group – Peculiar delta spot evolution and inferred subsurface magnetic rope structure. Solar Phys. 136, 133. DOI . ADS .

    Article  ADS  Google Scholar 

  • Weber, M.A., Fan, Y., Miesch, M.S.: 2011, The rise of active region flux tubes in the turbulent solar convective envelope. Astrophys. J. 741, 11. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by the MOST of ROC under grant NSC 102-2112-M-008-018 and the MOE grant “Aim for the Top University” to the National Central University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hsien Lin.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CH., Chen, YC. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region. Sol Phys 291, 751–777 (2016). https://doi.org/10.1007/s11207-016-0876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0876-3

Keywords

Navigation