Skip to main content
Log in

Improved Helioseismic Analysis of Medium-\(\ell\) Data from the Michelson Doppler Imager

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present a comprehensive study of one method for measuring various parameters of global modes of oscillation of the Sun. Using velocity data taken by the Michelson Doppler Imager (MDI), we analyze spherical harmonic degrees \(\ell\leq300\). Both current and historical methodologies are explained, and the various differences between the two are investigated to determine their effects on global-mode parameters and systematic errors in the analysis. These differences include a number of geometric corrections made during spherical harmonic decomposition; updated routines for generating window functions, detrending time series, and filling gaps; and consideration of physical effects such as mode-profile asymmetry, horizontal displacement at the solar surface, and distortion of eigenfunctions by differential rotation. We apply these changes one by one to three years of data, and then reanalyze the entire MDI mission applying all of them, using both the original 72-day long time series and 360-day long time series. We find significant changes in mode parameters, both as a result of the various changes to the processing, as well as between the 72-day and 360-day analyses. We find reduced residuals of inversions for internal rotation, but seeming artifacts remain, such as the peak in the rotation rate near the surface at high latitudes. An annual periodicity in the \(f\)-mode frequencies is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Notes

  1. The angle \(P_{\mathrm{eff}}\) is the effective \(P\)-angle, which is the angle between the solar-rotation axis and the column direction on the CCD; the angle \(B_{0}\) is the heliographic latitude of the sub-observer point.

  2. Since the coefficients of a model of order \(N\) are determined from a model of order \(N-1\), our algorithm may truncate the model if the ratio of the prediction error to the variance of the time series drops below \({\approx\,}1.2 \times10^{-6}\) as the model order is increased. However, this never occurred while gap-filling the MDI dataset.

  3. The sign of \(u_{r}\) relative to \(u_{\theta}\) and \(u_{\phi}\) depends on the convention for the sign of \(m\).

References

  • Anderson, E.R., Duvall, T.L. Jr. Jefferies, S.M.: 1990, Modeling of solar oscillation power spectra. Astrophys. J. 364, 699. DOI . ADS .

    Article  ADS  Google Scholar 

  • Antia, H.M., Basu, S., Pintar, J., Schou, J.: 2001, How correlated are f-mode frequencies with solar activity? In: Wilson, A., Pallé, P.L. (eds.) SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium SP-464, ESA, Noordwijk, 27. ADS .

    Google Scholar 

  • Beck, J.G., Giles, P.: 2005, Helioseismic determination of the solar rotation axis. Astrophys. J. Lett. 621, L153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J.: 2004, An overview of helio- and asteroseismology. In: Danesy, D. (ed.) SOHO 14 Helio- and Asteroseismology: Towards a Golden Future SP-559, ESA, Noordwijk, 1. ADS .

    Google Scholar 

  • Duvall, T.L. Jr.: 1982, A dispersion law for solar oscillations. Nature 300, 242. DOI . ADS .

    Article  ADS  Google Scholar 

  • Duvall, T.L. Jr. Jefferies, S.M., Harvey, J.W., Osaki, Y., Pomerantz, M.A.: 1993, Asymmetries of solar oscillation line profiles. Astrophys. J. 410, 829. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fahlman, G.G., Ulrych, T.J.: 1982, A new method for estimating the power spectrum of gapped data. Mon. Not. Roy. Astron. Soc. 199, 53. ADS .

    Article  ADS  Google Scholar 

  • Gough, D.: 2013, What have we learned from helioseismology, what have we really learned, and what do we aspire to learn? Solar Phys. 287, 9. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG) project. Science 272, 1284. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hill, F., Bolding, J., Toner, C., Corbard, T., Wampler, S., Goodrich, B., Goodrich, J., Eliason, P., Hanna, K.D.: 2003, The GONG++ data processing pipeline. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future SP-517, ESA, Noordwijk, 295. ADS .

    Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Thompson, M.J., Toomre, J.: 2000, Deeply penetrating banded zonal flows in the solar convection zone. Astrophys. J. Lett. 533, L163. DOI . ADS .

    Article  ADS  Google Scholar 

  • Korzennik, S.G.: 2005, A mode-fitting methodology optimized for very long helioseismic time series. Astrophys. J. 626, 585. DOI . ADS .

    Article  ADS  Google Scholar 

  • Korzennik, S.G., Eff-Darwich, A.: 2013, Mode frequencies from 17, 15 and 2 years of GONG, MDI, and HMI data. J. Phys. CS-440(1), 012015. DOI . ADS .

    ADS  Google Scholar 

  • Korzennik, S.G., Rabello-Soares, M.C., Schou, J.: 2004, On the determination of Michelson Doppler imager high-degree mode frequencies. Astrophys. J. 602, 481. DOI . ADS .

    Article  ADS  Google Scholar 

  • Larson, T., Schou, J.: 2009, Variations in global mode analysis. In: Dikpati, M., Arentoft, T., González Hernández, I., Lindsey, C., Hill, F. (eds.) Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21 CS-416, Astron. Soc. Pac., San Francisco, 311. ADS .

    Google Scholar 

  • Larson, T.P., Schou, J.: 2008, Improvements in global mode analysis. J. Phys. Conf. Ser. CS-118(1), 012083. DOI . ADS .

    Article  ADS  Google Scholar 

  • Libbrecht, K.G.: 1992, On the ultimate accuracy of solar oscillation frequency measurements. Astrophys. J. 387, 712. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nigam, R., Kosovichev, A.G.: 1998, Measuring the Sun’s eigenfrequencies from velocity and intensity helioseismic spectra: Asymmetrical line profile-fitting formula. Astrophys. J. Lett. 505, L51. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reiter, J., Rhodes, E.J. Jr. Kosovichev, A.G., Schou, J., Scherrer, P.H., Larson, T.P.: 2015, A method for the estimation of p-mode parameters from averaged solar oscillation power spectra. Astrophys. J. 803, 92. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rhodes, E.J. Jr., Reiter, J., Schou, J., Kosovichev, A.G., Scherrer, P.H.: 2001, Observed and predicted ratios of the horizontal and vertical components of the solar p-mode velocity eigenfunctions. Astrophys. J. 561, 1127. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schad, A., Timmer, J., Roth, M.: 2013, Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells. Astrophys. J. Lett. 778, L38. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schou, J.: 1992, On the analysis of helioseismic data. Ph.D. thesis, Aarhus University, Aarhus, Denmark. ADS .

  • Schou, J.: 1999, Migration of zonal flows detected using Michelson Doppler imager F-mode frequency splittings. Astrophys. J. Lett. 523, L181. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schou, J., Bogart, R.S.: 2002, Reduction of systematic errors in MDI measurements. In: American Astronomical Society Meeting Abstracts #200, Bull. Amer. Astron. Soc. 34, 645. ADS .

    Google Scholar 

  • Schou, J., Brown, T.M.: 1994, Generation of artificial helioseismic time-series. Astron. Astrophys. Suppl. 107, 541. ADS .

    ADS  Google Scholar 

  • Schou, J., Christensen-Dalsgaard, J., Thompson, M.J.: 1994, On comparing helioseismic two-dimensional inversion methods. Astrophys. J. 433, 389. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schou, J., Howe, R., Basu, S., Christensen-Dalsgaard, J., Corbard, T., Hill, F., Komm, R., Larsen, R.M., Rabello-Soares, M.C., Thompson, M.J.: 2002, A comparison of solar p-mode parameters from the Michelson Doppler imager and the global oscillation network group: Splitting coefficients and rotation inversions. Astrophys. J. 567, 1234. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vorontsov, S.V.: 2007, Solar p modes of high degree l: Coupling by differential rotation. Mon. Not. Roy. Astron. Soc. 378, 1499. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vorontsov, S.V., Jefferies, S.M.: 2013, Modeling solar oscillation power spectra. II. Parametric model of spectral lines observed in Doppler-velocity measurements. Astrophys. J. 778, 75. DOI . ADS .

    Article  ADS  Google Scholar 

  • Woodard, M.F.: 1989, Distortion of high-degree solar p-mode eigenfunctions by latitudinal differential rotation. Astrophys. J. 347, 1176. DOI . ADS .

    Article  ADS  Google Scholar 

  • Woodard, M., Schou, J., Birch, A.C., Larson, T.P.: 2013, Global-oscillation eigenfunction measurements of solar meridional flow. Solar Phys. 287, 129. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA Contract NAS5-02139. SOHO is a mission of international cooperation between NASA and ESA. The authors thank the Solar Oscillations Investigation team at Stanford University and its successor, the Joint Science Operations Center. We thank Rasmus Larsen in particular for providing the gap-filling code. Much of the work presented here was done while J. Schou was at Stanford University. T.P. Larson thanks the Max-Planck-Institut für Sonnensystemforschung for generously hosting him during the composition of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Larson.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(TAR 1.3 GB)

Appendix

Appendix

Detailed information on how to access MDI data from the global helioseismology pipeline can be found on the website of the Joint Science Operations Center (JSOC) at jsoc.stanford.edu/MDI/MDI_Global.html . This page contains documentation describing how the datasets used in this article were made and how they can be remade. In this appendix we describe how to access the relevant archived data. In what follows we assume some familiarity with the Data Record Management System (DRMS), detailed documentation for which is linked from the above website.

Mode-parameter files (as ASCII tables) for every analysis discussed in this article are available in the Electronic Supplementary Material. For the original analysis, they (and a helpful Readme file) can also be found at sun.stanford.edu/~schou/anavw72z/ . For all other analyses, they can also be retrieved from JSOC. The fields of a mode-parameter file are the following: \(\ell\), \(n\), \(\nu_{0}\), \(A\), \(w\), \(b\), \(x\), \(\{\tan (\gamma)\}\), \(\sigma_{\nu_{0}}, \sigma_{A}, \sigma_{w}, \sigma_{b}, \sigma_{x}, \{\sigma_{\tan(\gamma)}\}, a_{1}, a_{2}, \ldots, a_{N}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\). The parameter \(\tan(\gamma)\) and its error will not be present for fits done with symmetric profiles. The value of \(N\) is either 6, 18, or 36. Any parameter with zero error has not been fit for. The parameter \(x\) is not fit for in these analyses and is retained for historical reasons.

The data for the different “corrections” are labeled by the strings corr1 to corr9 corresponding to the numbering scheme in Table 2. The final correction in this set refers to the first way of applying the Woodard effect (holding \(B_{1}\) and \(B_{2}\) constant). These data have all been generated in the first author’s name space, with mode parameters found in su_tplarson.corr_vw_V_sht_modes. The primekeys are T_START, LMIN, LMAX, NDT, and TAG, where T_START is the beginning of the corresponding time series, most easily specified by the MDI day number suffixed by “d” (see Table 1). For all records in this series, \(\mathsf{LMIN}=0\), \(\mathsf{LMAX}=300\), and \(\mathsf {NDT}=103\mbox{,}680\), so these primekeys need never be specified. The TAG keyword is the label string, so TAG and T_START uniquely specify every record.

The second way of applying the Woodard effect and the asymmetric fits are both represented in the official MDI name space (mdi). For the former, mode parameters can be found in mdi.vw_V_sht_modes and for the latter in mdi.vw_V_sht_modes_asym. The primekeys are the same as given above, with the exception that these series do not have the TAG keyword and that \(\mathsf{NDT}=518\mbox{,}400\) for the 360-day fits. In addition, the results used in this article have the VERSION keyword (not a primekey) in these series set to version2. If these data are reprocessed in the future, VERSION will get a new value, but old versions can easily be retrieved.

The data series containing time series and window functions in the mdi name space have also been archived and can be retrieved; details on these data products are given on the above website. The corresponding data in the su_tplarson name space have not been archived, but can be recreated if needed. The procedure for doing so can be found on the website. The original time series and window functions have been archived in the dsds namespace, but have not yet been ported to the standard DRMS format for global helioseismology data products. They can, however, still be retrieved by request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, T.P., Schou, J. Improved Helioseismic Analysis of Medium-\(\ell\) Data from the Michelson Doppler Imager . Sol Phys 290, 3221–3256 (2015). https://doi.org/10.1007/s11207-015-0792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0792-y

Keywords

Navigation