Skip to main content
Log in

Reflection Properties of Gravito-MHD Waves in an Inhomogeneous Horizontal Magnetic Field

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We derive the dispersion equation for gravito-magnetohydrodynamical (MHD) waves in an isothermal, gravitationally stratified plasma with a horizontal inhomogeneous magnetic field. Sound and Alfvén speeds are constant. Under these conditions, it is possible to derive analytically the equations for gravito-MHD waves. The high values of the viscous and magnetic Reynolds numbers in the solar atmosphere imply that the dissipative terms in the MHD equations are negligible, except in layers around the positions where the frequency of the MHD wave equals the local Alfvén or slow wave frequency. Outside these layers the MHD waves are accurately described by the equations of ideal MHD.

We consider waves that propagate energy upward in the atmosphere. For the plane boundary, z=0, between two isothermal plasma regions with horizontal but different magnetic fields, we discuss the boundary conditions and derive the equations for the reflection and transmission coefficients.

In the simpler case of a gravitationally stratified plasma without magnetic field, these coefficients describe the reflection and transmission properties of gravito-acoustic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Notes

  1. Equations (11) and (12) show that the amplitudes of the fluid displacement ξ 1z and the total pressure perturbation P 1 are exponential functions of z. However, the phase-averaged energy density 〈ϵ〉 of these waves remains z invariant. Namely, 〈ϵ〉 is the sum of the corresponding thermal, kinetic and magnetic mean energy densities

    $$\langle\epsilon\rangle=\langle\epsilon_{T} \rangle+\langle \epsilon_{K} \rangle+\langle\epsilon_{M} \rangle, $$

    i.e.

    $$\langle\epsilon\rangle=\frac{v^2_{\mathrm{s}}}{2\rho_{0}(z)}\rho_{1}\rho ^{*}_{1}+\frac{\rho_{0}(z)}{2}\boldsymbol{v}_{1} \cdot\boldsymbol{v}_{1}^{*}+\frac{1}{2\mu_{0}} \boldsymbol{B}_{1}\cdot\boldsymbol{B}_{1}^{*}, $$

    where ∗ denotes the complex conjugate quantities, and ρ 1 and v 1=(v 1x ,v 1y ,v 1z ) are the perturbed density and plasma velocity. From the definitions of the fluid displacement ξ 1z =iv 1z /ω and the total pressure perturbation P 1=p 1+B 0B 1, one can easily write the following proportionalities: |v 1|∼ξ 1z , for the perturbed plasma velocity, ρ 1P 1 for the perturbed plasma density, and |B 1|∼P 1/B 0 for the perturbed magnetic field. According to Equations (6), (11) and (12)

    $$\boldsymbol{v}_{1}\cdot\boldsymbol{v}_{1}^{*} \equiv|\boldsymbol{v}_{1}|^2\sim \operatorname{exp}(z/H), \qquad \rho_{1}\rho^{*}_{1}\equiv|\rho _{1}|^2\sim \operatorname{exp}(-z/H), \qquad\boldsymbol{B}_{1} \cdot\boldsymbol{B}_{1}^{*}\equiv|\boldsymbol{B}_{1}|^2 \sim \mbox{const.}, $$

    which finally gives that the averaged wave density 〈ϵ〉 is z invariant.

  2. The second equation in Equation (9) can be rewritten in the form

    $$\frac{\mathrm{d}}{\mathrm{d}z}\bigl(P_{1}-g\rho_{0}(z) \xi_{1z}\bigr)=C_{3}\xi_{1z}-C_{4}P_{1}-g \rho_{0}(z)\,\frac{\mathrm{d}\xi_{1z}}{\mathrm{d}z}. $$

    Integrating this equation in the interval zζ yields boundary conditions for pressure perturbation.

  3. For the horizontal phase velocities \(V_{\mathrm{h}}<1/\sqrt{s}\) the modified acoustic waves are evanescent.

  4. For the pure acoustic case the reflection coefficient is \(R=\frac{ (s\sqrt{V^{2}_{\mathrm{h}}-1}-\sqrt {sV^{2}_{\mathrm{h}}-1} )^{2}}{ (s\sqrt{V^{2}_{\mathrm{h}}-1}+\sqrt {sV^{2}_{\mathrm{h}}-1} )^{2}}\). It is easy to see that for \(V_{\mathrm{h}}=\sqrt {(s+1)/s}\), R=0.

  5. For the horizontal phase velocities V hBVco≈0.97 gravity waves are evanescent.

References

  • Balet, B., Appert, K., Vaclavik, J.: 1982, Plasma Phys. 24, 1005.

    Article  ADS  Google Scholar 

  • Beliën, A.J., Martens, P.C.H., Keppens, R.: 1999, Astrophys. J. 526, 478.

    Article  ADS  Google Scholar 

  • Campbell, W.R., Roberts, B.: 1989, Astrophys. J. 338, 538.

    Article  ADS  Google Scholar 

  • Chen, F.C., Hasegawa, A.: 1974, Phys. Fluids 17, 1399.

    Article  ADS  Google Scholar 

  • DeForest, C.E., Gurman, J.B.: 1998, Astrophys. J. Lett. 501, L217.

    Article  ADS  Google Scholar 

  • Ferraro, V.C., Plumpton, C.: 1958, Astrophys. J. 127, 459.

    Article  ADS  MathSciNet  Google Scholar 

  • Goossens, M.: 1991, In: Priest, E.R., Hood, A.W. (eds.) Advances in Solar System Magnetohydrodynamics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Goossens, M., Erdélyi, R., Ruderman, M.S.: 2011, Space Sci. Rev. 158, 289.

    Article  ADS  Google Scholar 

  • Jovanović, G.: 2013, Rom. Rep. Phys. 65, 398.

    Google Scholar 

  • Kivelson, M.G., Russell, C.T.: 1995, Introduction to Space Physics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kuperus, M., Ionson, J.A., Spicer, D.S.: 1971, Annu. Rev. Astron. Astrophys. 19, 7.

    Article  ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: 1987, Fluid Mechanics, Course of Theoretical Physics 6, Second English edn. USSR Academy of Sciences, Moscow.

    MATH  Google Scholar 

  • Leroy, B., St. Schwartz, J.: 1982, Astron. Astrophys. 112, 84.

    ADS  MATH  Google Scholar 

  • Lites, B.W., Leka, K.D., Shumanich, A., Martinez Pillet, V., Shimizu, T.: 1996, Astrophys. J. 460, 1019.

    Article  ADS  Google Scholar 

  • Lou, Y.Q.: 1996, Mon. Not. Roy. Astron. Soc. 281, 761.

    Article  ADS  Google Scholar 

  • Mann, I.R., Wright, A.N.: 1995, J. Geophys. Res. 100, 19441.

    Article  ADS  Google Scholar 

  • Marmolino, C., Severino, G., Deubner, F.L., Fleck, B.: 1993, Astron. Astrophys. 278, 617.

    ADS  Google Scholar 

  • Mihalas, D.: 1984, Foundations of Radiation Hydrodynamics, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Moore, R.L., Musielak, Z.E., Suess, S.T., An, C.-H.: 1991, Astrophys. J. 378, 347.

    Article  ADS  Google Scholar 

  • Moore, R.L., Hammer, R., Musielak, Z.E., Suess, S.T., An, C.-H.: 1992, Astrophys. J. Lett. 397, L55.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L., DeLuca, E.E., Roberts, B., Davila, J.M.: 1999, Science 285, 862.

    Article  ADS  Google Scholar 

  • Ofman, L., Nakariakov, V.M., DeForest, C.E.: 2000, Astrophys. J. 514, 441.

    Article  ADS  Google Scholar 

  • Ofman, L., Nakariakov, V.M., Sehgal, N.: 2000, Astrophys. J. 533, 1071.

    Article  ADS  Google Scholar 

  • Pintér, B., Čadež, V.M., Goossens, M.: 1998, Astron. Astrophys. 332, 775.

    ADS  Google Scholar 

  • Pintér, B., Čadež, V.M., Roberts, B.: 1999, Astron. Astrophys. 346, 190.

    ADS  Google Scholar 

  • Pintér, B., Erdélyi, R., Goossens, M.: 2007, Astron. Astrophys. 466, 377.

    Article  ADS  Google Scholar 

  • Pintér, B., Erdélyi, R., New, R.: 2001, Astron. Astrophys. Lett. 372, L17.

    Article  ADS  Google Scholar 

  • Pintér, B., Goossens, M.: 1999, Astron. Astrophys. 347, 321.

    ADS  Google Scholar 

  • Poedts, S., Goossens, M., Kerner, W.: 1990, Astrophys. J. 360, 279.

    Article  ADS  Google Scholar 

  • Poedts, S., Kerner, W., Goedbloed, J.P., Keegan, B., Huysmans, G.T.A., Schwarz, E.: 1992, Plasma Phys. Control. Fusion 34, 1397.

    Article  ADS  Google Scholar 

  • Roberts, B.: 1991, In: Priest, E.R., Hood, A.W. (eds.) Advances in Solar System Magnetohydrodynamics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Roberts, B., Ulmschneider, P.: 1997, In: Simnett, G. (ed.) Solar and Heliospheric Plasma Physics, Springer, Berlin.

    Google Scholar 

  • Rosenthal, C.S., Bogdan, T.J., Carlsson, M., Dorch, S.B.F., Hansteen, V., McIntosh, S.W., McMurry, A., Nordlund, Å., Stein, R.F.: 2002, Astrophys. J. 564, 508.

    Article  ADS  Google Scholar 

  • Rosner, R., An, C.-H., Musielak, Z.E., Moore, R.L., Suess, S.T.: 1991, Astrophys. J. Lett. 372, L91.

    Article  ADS  Google Scholar 

  • Thomas, J.H.: 1983, Annu. Rev. Fluid Mech. 15, 321.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Gurman, J.B., Neupert, W.M., Newmark, J.S., Delaboudiniére, J.-P., St. Cyr, O.C., Stezelberger, S., Dere, K.P., et al.: 1999, Astrophys. J. Lett. 517, L151.

    Article  ADS  Google Scholar 

  • Vaclavik, J., Appert, K.: 1991, Nucl. Fusion 31, 1945.

    Article  Google Scholar 

  • Yu, C.P.: 1965, Phys. Fluids 8, 650.

    Article  ADS  MATH  Google Scholar 

  • Zhu, X., Kivelson, M.G.: 1988, J. Geophys. Res. 93, 8602.

    Article  ADS  Google Scholar 

  • Zhugzhda, Yu.D.: 1979, Soviet Astron. 23, 42.

    ADS  Google Scholar 

  • Zhugzhda, Yu.D., Dzhailov, N.S.: 1982, Astron. Astrophys. 112, 16(2D).

    ADS  Google Scholar 

  • Zhugzhda, Yu.D., Dzhailov, N.S.: 1984a, Astron. Astrophys. 132, 45.

    ADS  Google Scholar 

  • Zhugzhda, Yu.D., Dzhailov, N.S.: 1984b, Astron. Astrophys. 132, 52.

    ADS  Google Scholar 

Download references

Acknowledgements

This work was performed in the framework of the Montenegrin National Project “Physics of Ionized Gases and Ionized Radiation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jovanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanović, G. Reflection Properties of Gravito-MHD Waves in an Inhomogeneous Horizontal Magnetic Field. Sol Phys 289, 4085–4104 (2014). https://doi.org/10.1007/s11207-014-0579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0579-6

Keywords

Navigation