Skip to main content
Log in

Classification and Evaluation of Current Climate Vulnerability Assessment Methods

  • Original Research
  • Published:
Social Indicators Research Aims and scope Submit manuscript

Abstract

Vulnerability to climate change is a complex, multi-dimensional construct influenced by multiple interacting factors. Several methods and approaches have been developed over the past three decades, yet there are no standard methods for assessing vulnerability (Connelly et al. in State of the art report (4) vulnerability assessment: definitions, indicators and existing assessment methods (issue 4), 2015). The vulnerability assessment studies differ in conceptualization, methodology, sectors affected, exposure to specific hazards, regional factors, and the scale of impact. Assessment of climate vulnerability and identification of indicators to measure it are significant problems. This paper provides a comprehensive and systematic review of indicator-based vulnerability assessment studies from 1990 to 2020. We analyse 84 studies to understand various aspects of vulnerability assessment—concept and approach, dimensions and indicators, and assessment methods. Though multi-dimensional assessments represent the overall vulnerability of an area, only 29.8% of the studies assessed more than one dimension. Analysis shows that 68.8% (75 of 109) of the identified indicators belong to the socioeconomic dimension. Socioeconomic vulnerability is the most assessed, and environmental vulnerability is the least assessed dimension, possibly attributed to ease of data availability. Due to the lack of methodological differences, there has been confusion associated with index-based and indicator-based studies in the literature (Ramieri et al. in Methods for assessing coastal vulnerability to climate change. ETC CCA Tech Paper 1/2011 (issue January), 2011. 10.13140/RG.2.1.1906.9840). Therefore, we develop a taxonomy of the existing vulnerability assessment methods based on their methodological approach. To avoid ambiguity, we denote all methods that employ indicators as indicator-based vulnerability assessment methods and classify them into index-based, clustering-based, and GIS-based methods. Finally, we discuss the advantages and disadvantages of each vulnerability assessment method and the open challenges in this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addo, K. A. (2013). Assessing coastal vulnerability index to climate change: The case of accra—Ghana. Journal of Coastal Research, 165(65), 1892–1897. https://doi.org/10.2112/si65-320.1

    Article  Google Scholar 

  • Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006

    Article  Google Scholar 

  • Adger, N., Brooks, N., Bentham, G., Agnew, M., & Erikse, S. (2004). New indicator of vulnerability and adaptive capacity. January, 101.

  • Ahsan, M. N., & Warner, J. (2014). The socioeconomic vulnerability index: A pragmatic approach for assessing climate change led risks - A case study in the south-western coastal Bangladesh. International Journal of Disaster Risk Reduction, 8, 32–49. https://doi.org/10.1016/j.ijdrr.2013.12.009

    Article  Google Scholar 

  • Armaș, I., & Gavriș, A. (2013). Social vulnerability assessment using spatial multi-criteria analysis (SEVI model) and the Social Vulnerability Index (SoVI model) – a case study for Bucharest, Romania. Natural Hazards and Earth System Sciences, 13(6), 1481–1499. https://doi.org/10.5194/nhess-13-1481-2013

    Article  ADS  Google Scholar 

  • Arun Kumar, A., & Kunte, P. D. (2012). Coastal vulnerability assessment for Chennai, east coast of India using geospatial techniques. Natural Hazards, 64(1), 853–872. https://doi.org/10.1007/s11069-012-0276-4

    Article  Google Scholar 

  • Bahinipati, C. S. (2014). Assessment of vulnerability to cyclones and floods in Odisha, India : A District-Level. CURRENT SCIENCE, 107(12), 1997–2007.

    Google Scholar 

  • Balica, S., & Wright, N. G. (2010). Reducing the complexity of the flood vulnerability index. Environmental Hazards, 9(4), 321–339. https://doi.org/10.3763/ehaz.2010.0043

    Article  Google Scholar 

  • Balica, S. F., Douben, N., & Wright, N. G. (2009). Flood vulnerability indices at varying spatial scales. Water Science and Technology, 60(10), 2571–2580. https://doi.org/10.2166/wst.2009.183

    Article  CAS  PubMed  Google Scholar 

  • Balica, S. F., Wright, N. G., & Meulen, F. van der. (2012). A flood vulnerability index for coastal cities and its use in assessing climate change impacts. In Natural Hazards (Vol. 64, Issue 1). https://doi.org/10.1007/s11069-012-0234-1

  • Bergstrand, K., Mayer, B., Brumback, B., & Zhang, Y. (2015). Assessing the relationship between social vulnerability and community resilience to hazards. Social Indicators Research, 122(2), 391–409. https://doi.org/10.1007/s11205-014-0698-3

    Article  PubMed  Google Scholar 

  • Birkmann, J., & Wisner, B. (2005). Measuring the un-measurable: The Challenge of Vulnerability. Report of the Second Meeting of the UNU-EHS Expert Working Group on Measuring Vulnerability. In The challenge of vulnerability. Source. UNU Institute for Environment and Human Security (UNU-EHS).

  • Borden, K. A., Schmidtlein, M. C., Emrich, C. T., Piegorsch, W. W., & Cutter, S. L. (2007). Vulnerability of U.S. cities to environmental hazards. Journal of Homeland Security and Emergency Management. https://doi.org/10.2202/1547-7355.1279

    Article  Google Scholar 

  • Boruff, B. J., & Cutter, S. L. (2007). The environmental vulnerability of caribbean island nations. The Geographical Review, 97(1), 24–45.

    Article  ADS  Google Scholar 

  • Boruff, B. J., Emrich, C., & Cutter, S. L. (2005). Erosion hazard vulnerability of US coastal counties. Journal of Coastal Research, 215, 932–942. https://doi.org/10.2112/04-0172.1

    Article  Google Scholar 

  • Briguglio, L. (1992). Preliminary study on the construction of an index for ranking countries according to their economic vulnerability. Unctad/ldc/misc, 4, 1992.

    Google Scholar 

  • Briguglio, L. (1995). Small island developing states and their economic vulnerabilities. World Development, 23(9), 1615–1632.

    Article  Google Scholar 

  • Briguglio, L., Cordina, G., Farrugia, N., & Vella, S. (2008). Economic vulnerability and resilience: Concepts and measurements. UNU World Institute for Development Economics Research (UNU-WIDER). https://doi.org/10.1080/13600810903089893

  • Brooks, N., Adger, W. N., & Kelly, P. M. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environmental Change, 15(2), 151–163. https://doi.org/10.1016/j.gloenvcha.2004.12.006

    Article  Google Scholar 

  • Brooks, N. (2003). Vulnerability, risk and adaptation: A conceptual framework. Tyndall Centre Working Paper No. 38.

  • Bryan, B., Harvey, N., Belperio, T., & Bourman, B. (2001). Distributed process modeling for regional assessment of coastal vulnerability to sea-level rise. Environmental Modeling and Assessment, 6, 57–65.

    Article  Google Scholar 

  • Burton, C. G. (2010). Social vulnerability and hurricane impact modeling. Natural Hazards Review, 11(2), 58–68. https://doi.org/10.1061/(ASCE)1527-6988(2010)11:2(58)

    Article  MathSciNet  Google Scholar 

  • Câmara, S., Pinto, F., Silva, F., Soares, M., Paula, De., & Thiago. (2020). Socioeconomic vulnerability of communities on the Brazilian coast to the largest oil spill (2019–2020) in tropical oceans. Ocean and Coastal Management., 202, 105506. https://doi.org/10.1016/j.ocecoaman.2020.105506

    Article  Google Scholar 

  • Clark, G. E., Moser, S. C., Ratick, S. J., Meyer, W. B., Emani, S., Jin, W., Jeanne, X., Kasperson, R. E., & Schwarz, H. E. (1998). Assessing the vulnerability of coastal communities to extreme storms : The case of Revere, MA., USA. Mitigation and Adaptation Strategies for Global Change, 3, 59–82.

    Article  Google Scholar 

  • Colburn, L. L., Jepson, M., Weng, C., Seara, T., Weiss, J., & Hare, J. A. (2016). Indicators of climate change and social vulnerability in fishing dependent communities along the Eastern and Gulf Coasts of the United States. Marine Policy, 74, 323–333. https://doi.org/10.1016/j.marpol.2016.04.030

    Article  Google Scholar 

  • Connelly, A., Carter, J. G., Handley, J., Rome, E., Worst, R., Voβ, N., & Bosch, P. (2015). State of the Art Report (4) Vulnerability Assessment: Definitions, Indicators and Existing Assessment Methods (Issue 4).

  • Cutter, S. L. (1996). Vulnerability to hazards. Progress in Human Geography, 20(4), 529–539.

    Article  Google Scholar 

  • Cutter, S. L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to natural hazards. Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2301–2306. https://doi.org/10.1073/pnas.0710375105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000). Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713–737. https://doi.org/10.1111/0004-5608.00219

    Article  Google Scholar 

  • Cutter, S. L., Boruff, B. J., & Shirley, L. W. (2003). Social vulnerability to environmental hazards. In Social Science Quarterly, 84(2), 242–261.

    Article  Google Scholar 

  • Das S., Ghosh A., Hazra S., Ghosh T., Safra de Campos R., Samanta S. (2020). Linking IPCC AR4 & AR5 frameworks for assessing vulnerability and risk to climate change in the Indian Bengal Delta. Progress in Disaster Science, 7, art. no. 100110.

  • Davidson, B. R. A., Member, A., Lambert, K. B., & Member, S. (2001). Comparing the hurricane disaster risk of U.S. coastal counties. Natural Hazards, 2(August), 132–142.

  • de Sherbinin, A., Bukvic, A., Rohat, G., et al. (2019). Climate vulnerability mapping: A systematic review and future prospects. Wires Climate Change., 10, e600. https://doi.org/10.1002/wcc.600

    Article  Google Scholar 

  • Deressa, T., Hassan, R. M., & Ringler, C. (2008). Measuring Ethiopian farmers’ vulnerability to climate change across regional states. In IFPRI Discussion Paper 00806.

  • Diez, P. G., Perillo, G. M. E., & Piccolo, M. C. (2007). Vulnerability to sea-level rise on the coast of the Buenos Aires province. Journal of Coastal Research, 231(231), 119–126. https://doi.org/10.2112/04-0205.1

    Article  Google Scholar 

  • Doukakis, E. (2005). Coastal vulnerability and risk parameters. European Water, 11(12), 3–7.

    Google Scholar 

  • Downing, T. E., & Patwardhan, A. (2003). Vulnerability Assessment for Climate Adaptation. 3.

  • Dwarakish, G. S., Vinay, S. A., Natesan, U., Asano, T., Kakinuma, T., Venkataramana, K., Pai, B. J., & Babita, M. K. (2009). Coastal vulnerability assessment of the future sea level rise in Udupi coastal zone of Karnataka state, west coast of India. Ocean and Coastal Management, 52(9), 467–478. https://doi.org/10.1016/j.ocecoaman.2009.07.007

    Article  Google Scholar 

  • Emrich, C. T. (2005). Social Vulnerability in US Metropolitan Areas : Improvements in Hazard Vulnerability Assessment by.

  • Farhan, A. R., & Lim, S. (2012). Vulnerability assessment of ecological conditions in Seribu Islands, Indonesia. Ocean and Coastal Management, 65, 1–14. https://doi.org/10.1016/j.ocecoaman.2012.04.015

    Article  Google Scholar 

  • Fekete, A. (2009). Validation of a social vulnerability index in context to river-floods in Germany. Journal of the British Academy, 1, 393–403. https://doi.org/10.5871/jba/001.151

    Article  Google Scholar 

  • Felsenstein, D., & Lichter, M. (2014). Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding. Natural Hazards, 71(1), 463–491. https://doi.org/10.1007/s11069-013-0929-y

    Article  Google Scholar 

  • Fernandez, P., Mourato, S., & Moreira, M. (2016). Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia. Geomatics, Natural Hazards and Risk, 7(4), 1367–1389. https://doi.org/10.1080/19475705.2015.1052021

    Article  Google Scholar 

  • Ford, J. D., & Pearce, T. (2010). What we know, do not know, and need to know about climate change vulnerability in the western Canadian Arctic: A systematic literature review. Environmental Research Letters. https://doi.org/10.1088/1748-9326/5/1/014008

    Article  Google Scholar 

  • Ford, J. D., Pearce, T., McDowell, G., Berrang-Ford, L., Sayles, J. S., & Belfer, E. (2018). Vulnerability and its discontents: The past, present, and future of climate change vulnerability research. Climatic Change, 151(2), 189–203. https://doi.org/10.1007/s10584-018-2304-1

    Article  ADS  Google Scholar 

  • Füssel, H. M., & Klein, R. J. T. (2006). Climate change vulnerability assessments: An evolution of conceptual thinking. Climatic Change, 75(3), 301–329. https://doi.org/10.1007/s10584-006-0329-3

    Article  ADS  Google Scholar 

  • Gbetibouo, G. A., Ringler, C., & Hassan, R. (2010). Mapping South African farming sector vulnerability to climate change and variability. Natural Resources Forum, 34, 175–187.

    Article  Google Scholar 

  • Ge, Y., Dou, W., Gu, Z., Qian, X., Wang, J., Xu, W., Shi, P., Ming, X., Zhou, X., & Chen, Y. (2013). Assessment of social vulnerability to natural hazards in the Yangtze River Delta, China. Stochastic Environmental Research and Risk Assessment, 27(8), 1899–1908. https://doi.org/10.1007/s00477-013-0725-y

    Article  Google Scholar 

  • González-Riancho, P., Aguirre-Ayerbe, I., García-Aguilar, O., Medina, R., González, M., Aniel-Quiroga, I., Gutiérrez, O. Q., Álvarez-Gómez, J. A., Larreynaga, J., & Gavidia, F. (2014). Integrated tsunami vulnerability and risk assessment: Application to the coastal area of El Salvador. Natural Hazards and Earth System Sciences, 14(5), 1223–1244. https://doi.org/10.5194/nhess-14-1223-2014

    Article  ADS  Google Scholar 

  • Gornitz, V. (1990). Vulnerability of the East Coast, U.S.A. to future sea level rise. Journal of Coastal Research, 9, 201–237.

    Google Scholar 

  • Gornitz, V. M., Daniels, R. C., White, T. W., Birdwell, K. R., Gornitzf, V. M., Danielst, R. C., & Birdwellll, K. R. (1994). The development of a coastal risk assessment database: Vulnerability to sea-level rise in the U.S. Southeast. Source Journal of Coastal Research, 12, 327–338. https://doi.org/10.2307/25735608

    Article  Google Scholar 

  • Gornitz, V., White, T. W., & Cushman, R. M. (1991). VULNERABILITY OF THE U.S. TO FUTURE SEA LEVEL RISE.

  • Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change - A case study in Mozambique. Global Environmental Change, 19(1), 74–88. https://doi.org/10.1016/j.gloenvcha.2008.11.002

    Article  Google Scholar 

  • Han, J., Kamber, M., & Tung, A. K. H. (2001). Spatial Clustering Methods in Data Mining: A Survey.

  • Hegde, A. V., & Reju, V. R. (2007). Development of coastal vulnerability index for mangalore coast India. Journal of Coastal Research, 23(5), 1106. https://doi.org/10.2112/04-0259.1

    Article  Google Scholar 

  • Holand, I. S., Lujala, P., & Rod, J. K. (2011). Social vulnerability assessment for Norway: A quantitative approach. Norsk Geografisk Tidsskrift, 65(1), 1–17. https://doi.org/10.1080/00291951.2010.550167

    Article  Google Scholar 

  • INCOIS. (2012). Coastal vulnerability atlas of India. In Indian National Centre for Ocean Information Services (INCOIS). https://doi.org/10.1080/00036840601007211

    Article  Google Scholar 

  • IPCC. (1995). Climate Change 1995: IPCC Second Assessment. A report of the Intergovernmental Panel on Climate Change.

  • IPCC. (2001). Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Watson, R.T. and the Core Writing Team (eds.)]. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA. https://doi.org/10.5860/choice.40-4660

  • IPCC. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, (M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson, Eds.). Cambridge University Press, Cambridge, UK. https://doi.org/10.1016/B978-008044910-4.00250-9

  • IPCC, (2014) Climate change 2014: Impacts, adaptation, and vulnerability. part a: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. (2014). https://doi.org/10.1007/s13398-014-0173-7.2

  • IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, p. 3056 https://doi.org/10.1017/9781009325844.

  • IPCC-CZMS. (1992). Global Climate Change and the Rising Challenge of the Sea. Coastal Zone Management Subgroup. Response Strategies Working Group. Intergovernmental Panel on Climate Change.

  • Islam, M. M., Sallu, S., Hubacek, K., & Paavola, J. (2014). Vulnerability of fishery-based livelihoods to the impacts of climate variability and change: Insights from coastal Bangladesh. Regional Environmental Change, 14(1), 281–294. https://doi.org/10.1007/s10113-013-0487-6

    Article  Google Scholar 

  • João, E., & Fonseca, A. (1996). The role of gis in improving environmental assessment effectiveness: Theory vs. practice. Impact Assessment, 14(4), 371–387. https://doi.org/10.1080/07349165.1996.9725913

    Article  Google Scholar 

  • Joevivek, V., Saravanan, S., & Chandrasekar, N. (2013). Coastal vulnerability and shoreline changes for southern tip of India-remote sensing and GIS approach. Journal of Earth Science and Climatic Change., 4, 1000144.

    Google Scholar 

  • Kaly, U., Briguglio, L., McLeod, H., Schmall, S., Pratt, C., & Pal, R. (1999). Environmental Vulnerability Index (EVI) to summarise national environmental vulnerability profiles. SOPAC Technical Report 275.

  • Kelly, P. M., & Adger, W. N. (2000). Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Climatic Change, 47(4), 325–352. https://doi.org/10.1023/A:1005627828199

    Article  Google Scholar 

  • Kleinosky, L. R., Yarnal, B., & Fisher, A. (2007). Vulnerability of hampton roads, virginia to storm-surge flooding and sea-level rise. Natural Hazards, 40(1), 43–70. https://doi.org/10.1007/s11069-006-0004-z

    Article  Google Scholar 

  • Kumar, K. S. K., & Tholkappian, S. (2006). Relative vulnerability of indian coastal districts to sea-level rise and climate extremes. International Review for Environmental Strategies, 6(1), 3–22.

    Google Scholar 

  • Kumar, T. S., Mahendra, R. S., Nayak, S., Radhakrishnan, K., & Sahu, K. C. (2010). Coastal vulnerability assessment for orissa state, east coast of india. Journal of Coastal Research, 263, 523–534. https://doi.org/10.2112/09-1186.1

    Article  Google Scholar 

  • Kumpulainen, S. (2006). Vulnerability concepts in hazard and risk assessment. Special Paper of the Geological Survey of Finland, 42, 65–74.

    Google Scholar 

  • Kunte, P. D., Jauhari, N., Mehrotra, U., Kotha, M., Hursthouse, A. S., & Gagnon, A. S. (2014). Multi-hazards coastal vulnerability assessment of Goa, India, using geospatial techniques. Ocean and Coastal Management, 95, 264–281. https://doi.org/10.1016/j.ocecoaman.2014.04.024

    Article  Google Scholar 

  • Lee, Y. J. (2014). Social vulnerability indicators as a sustainable planning tool. Environmental Impact Assessment Review, 44, 31–42. https://doi.org/10.1016/j.eiar.2013.08.002

    Article  Google Scholar 

  • Liverman, D. M. (1990). Vulnerability to global environmental change. Understanding Global Environmental Change.

  • Lixin, Y., Xi, Z., Lingling, G., & Dong, Z. (2014). Analysis of social vulnerability to hazards in China. Environmental Earth Sciences, 71(7), 3109–3117. https://doi.org/10.1007/s12665-013-2689-0

    Article  ADS  Google Scholar 

  • Maggino, F., & Ruviglioni, E. (2009). Obtaining weights: from objective to subjective approaches in view of more participative methods in the construction of composite indicators. Proceedings of New Techniques and Technologies for Statistics.

  • Mahapatra, M., Ramakrishnan, R., & Rajawat, A. S. (2015). Coastal vulnerability assessment using analytical hierarchical process for South Gujarat coast India. Natural Hazards, 76(1), 139–159. https://doi.org/10.1007/s11069-014-1491-y

    Article  Google Scholar 

  • Mahendra, R. S., Mohanty, P. C., Bisoyi, H., Kumar, T. S., & Nayak, S. (2011). Assessment and management of coastal multi-hazard vulnerability along the Cuddalore-Villupuram, east coast of India using geospatial techniques. Ocean and Coastal Management, 54(4), 302–311. https://doi.org/10.1016/j.ocecoaman.2010.12.008

    Article  Google Scholar 

  • Maiti, S., Jha, S. K., Garai, S., Nag, A., Chakravarty, R., Kadian, K. S., Chandel, B. S., Datta, K. K., & Upadhyay, R. C. (2015). Assessment of social vulnerability to climate change in the eastern coast of India. Climatic Change, 131(2), 287–306. https://doi.org/10.1007/s10584-015-1379-1

    Article  ADS  Google Scholar 

  • Mansur, A. V., Brondízio, E. S., Roy, S., Hetrick, S., Vogt, N. D., & Newton, A. (2016). An assessment of urban vulnerability in the Amazon Delta and Estuary: A multi-criterion index of flood exposure, socio-economic conditions and infrastructure. Sustainability Science, 11(4), 625–643. https://doi.org/10.1007/s11625-016-0355-7

    Article  Google Scholar 

  • Mazumdar, J., & Paul, S. K. (2018). A spatially explicit method for identification of vulnerable hotspots of Odisha, India from potential cyclones. International Journal of Disaster Risk Reduction, 27, 391–405. https://doi.org/10.1016/j.ijdrr.2017.11.001

    Article  Google Scholar 

  • Montz, B. E., & Evans, T. A. (2001). Gis and social vulnerability analysis. Coping with Flash Floods, 77, 37–48. https://doi.org/10.1007/978-94-010-0918-8_5

    Article  Google Scholar 

  • Müller, A., Reiter, J., & Weiland, U. (2011). Assessment of urban vulnerability towards floods using an indicator-based approach-a case study for Santiago de Chile. Natural Hazards and Earth System Sciences, 11(8), 2107–2123. https://doi.org/10.5194/nhess-11-2107-2011

    Article  ADS  Google Scholar 

  • Murali, R. M., Ankita, M., Amrita, S., & Vethamony, P. (2013). Coastal vulnerability assessment of Puducherry coast, India, using the analytical hierarchical process. Natural Hazards and Earth System Sciences, 13, 3291–3311. https://doi.org/10.5194/nhess-13-3291-2013

    Article  ADS  Google Scholar 

  • Narayanan, K., & Patnaik, U. (2009). Vulnerability and climate Change: An analysis of the eastern coastal districts of India. Munich Personal RePEc Archive pp. 22062 (Issue 22062).

  • NATCOM. (2004). India’s initial national communication to the United Nations Framework Convention on Climate Change. Ministry of Environment and Forests, Government of India.

  • National Research Council. (2006). Learning to Think Spatially. The National Academies Press. https://doi.org/10.17226/11019

  • Neil Adger, W. (1999). Social vulnerability to climate change and extremes in coastal Vietnam. World Development, 27(2), 249–269. https://doi.org/10.1016/S0305-750X(98)00136-3

    Article  Google Scholar 

  • Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. A Global Assessment: PLoS ONE. https://doi.org/10.1371/journal.pone.0118571

    Book  Google Scholar 

  • O’BRIEN, K., Eriksen, S., Nygaard, L. P., & Schjolden, A. (2007). Why different interpretations of vulnerability matter in climate change discourses. Climate Policy, 7(1), 73–88. https://doi.org/10.1080/14693062.2007.9685639

    Article  Google Scholar 

  • Orencio, P. M., & Fujii, M. (2013). An index to determine vulnerability of communities in a coastal zone: A case study of Baler, Aurora Philippines. Ambio, 42(1), 61–71. https://doi.org/10.1007/s13280-012-0331-0

    Article  ADS  PubMed  Google Scholar 

  • Palmer, B. J., Van Der Elst, R., MacKay, F., Mather, A. A., Smith, A. M., Bundy, S. C., Thackeray, Z., Leuci, R., & Parak, O. (2011). Preliminary coastal vulnerability assessment for KwaZulu-Natal, South Africa. Journal of Coastal Research SPEC. ISSUE, 64, 1390–1395.

    Google Scholar 

  • Pendleton, E. A., Theiler, E. R., & Williams, S. J. (2005). Coastal vulnerability assessment of Cape Hatteras National Seashore (CAHA) to sea-level rise. Open-File Report. U.S.Geological Survey 2004–1064, 20. http://pubs.usgs.gov/of/2004/1064/images/pdf/caha.pdf

  • Ramieri, E., Hartley, A., Barbanti, A., Santos, F. D., Gomes, A., Hilden, M., Laihonen, P., Marinova, N., Santini, M., & European. (2011). Methods for assessing coastal vulnerability to climate change. ETC CCA Technical Paper 1/2011 (Issue January). https://doi.org/10.13140/RG.2.1.1906.9840

  • Rao, K. N., Subraelu, P., Rao, T. V., Malini, B. H., Ratheesh, R., Bhattacharya, S., Rajawat, A. S., & Ajai. (2008). Sea-level rise and coastal vulnerability: An assessment of Andhra Pradesh coast, India through remote sensing and GIS. Journal of Coastal Conservation, 12(4), 195–207. https://doi.org/10.1007/s11852-009-0042-2

    Article  Google Scholar 

  • Rygel, L., O’Sullivan, D., & Yarnal, B. (2006). A method for constructing a social vulnerability index: An application to hurricane storm surges in a developed country. Mitigation and Adaptation Strategies for Global Change, 11(3), 741–764. https://doi.org/10.1007/s11027-006-0265-6

    Article  Google Scholar 

  • Sahoo, B., & Bhaskaran, P. K. (2018). Multi-hazard risk assessment of coastal vulnerability from tropical cyclones – A GIS-based approach for the Odisha coast. Journal of Environmental Management, 206, 1166–1178. https://doi.org/10.1016/j.jenvman.2017.10.075

    Article  PubMed  Google Scholar 

  • Salik, K. M., Jahangir, S., Zahdi, W., & ul Z., & Hasson, S. ul. (2015). Climate change vulnerability and adaptation options for the coastal communities of Pakistan. Ocean and Coastal Management, 112, 61–73. https://doi.org/10.1016/j.ocecoaman.2015.05.006

    Article  Google Scholar 

  • Saxena, S., Geethalakshmi, V., & Lakshmanan, A. (2013). Development of habitation vulnerability assessment framework for coastal hazards: Cuddalore coast in Tamil Nadu, India-A case study. Weather and Climate Extremes, 2, 48–57. https://doi.org/10.1016/j.wace.2013.10.001

    Article  Google Scholar 

  • Schmidtlein, M. C., Deutsch, R. C., Piegorsch, W. W., & Cutter, S. L. (2008). Building indexes of vulnerability : A sensitivity analysis of the social vulnerability index. Risk Analysis : An Official Publication of the Society for Risk Analysis, 28(4), 1–29. https://doi.org/10.1111/j.1539-6924.2008.01072.x

    Article  Google Scholar 

  • Shahid, S., & Behrawan, H. (2008). Drought risk assessment in the western part of Bangladesh. Natural Hazards, 46(3), 391–413. https://doi.org/10.1007/s11069-007-9191-5

    Article  Google Scholar 

  • Sharma, U., & Patwardhan, A. (2008). Methodology for identifying vulnerability hotspots to tropical cyclone hazard in India. Mitigation and Adaptation Strategies for Global Change, 13(7), 703–717. https://doi.org/10.1007/s11027-007-9123-4

    Article  Google Scholar 

  • Sheik Mujabar, P., & Chandrasekar, N. (2013). Coastal erosion hazard and vulnerability assessment for southern coastal Tamil Nadu of India by using remote sensing and GIS. Natural Hazards, 69(3), 1295–1314. https://doi.org/10.1007/s11069-011-9962-x

    Article  Google Scholar 

  • Sherly, M. A., Karmakar, S., Parthasarathy, D., Chan, T., & Rau, C. (2015). Disaster vulnerability mapping for a densely populated coastal urban area: An application to Mumbai, India. Annals of the Association of American Geographers, 105(6), 1198–1220. https://doi.org/10.1080/00045608.2015.1072792

    Article  Google Scholar 

  • Siagian, T. H., Purhadi, P., Suhartono, S., & Ritonga, H. (2014). Social vulnerability to natural hazards in Indonesia: Driving factors and policy implications. Natural Hazards, 70(2), 1603–1617. https://doi.org/10.1007/s11069-013-0888-3

    Article  Google Scholar 

  • Solorio-Fernández, S., Carrasco-Ochoa, J. A., & Martínez-Trinidad, J. F. (2020). A review of unsupervised feature selection methods. Artificial Intelligence Review, 53(2), 907–948. https://doi.org/10.1007/s10462-019-09682-y

    Article  Google Scholar 

  • Stafford, S., & Abramowitz, J. (2017). An analysis of methods for identifying social vulnerability to climate change and sea level rise: A case study of Hampton Roads Virginia. Natural Hazards, 85(2), 1089–1117. https://doi.org/10.1007/s11069-016-2622-4

    Article  Google Scholar 

  • Su, S., Pi, J., Wan, C., Li, H., Xiao, R., & Li, B. (2015). Categorizing social vulnerability patterns in Chinese coastal cities. Ocean and Coastal Management, 116, 1–8. https://doi.org/10.1016/j.ocecoaman.2015.06.026

    Article  Google Scholar 

  • Szlafsztein, C., & Sterr, H. (2007). A GIS-based vulnerability assessment of coastal natural hazards, state of Pará. Brazil. Journal of Coastal Conservation, 11(1), 53–66. https://doi.org/10.1007/s11852-007-0003-6

    Article  Google Scholar 

  • Thieler, E. R., & Hammar-Klose, E. S. (1999). National Assessment of Coastal Vulnerability to Future Sea Level Rise: Preliminary Results for the U.S. Atlantic Coasts. In U.S. Geological Survey.

  • Turner, B. L., Kasperson, R. E., Matsone, P. A., McCarthy, J. J., Corell, R. W., Christensene, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., & Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8074–8079. https://doi.org/10.1073/pnas.1231335100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • United Nations. (2004). Living with risk: a global review of disaster reduction initiatives. In United Nations International Strategy for Disaster Reduction, Geneva, Switzerland.

  • Villa, F., & McLeod, H. (2002). Environmental vulnerability indicators for environmental planning and decision-making: Guidelines and applications. Environmental Management, 29(3), 335–348. https://doi.org/10.1007/s00267-001-0030-2

    Article  PubMed  Google Scholar 

  • Vincent, K., & Cull, T. (2010). A household social vulnerability index (HSVI) for evaluating adaptation projects in developing countries. PEGNet Conference 2010: Policies to Foster and Sustain Equitable Development in Times of Crises, Midrand, 2–3rd September 2010, September 2–3.

  • Vincent, K. (2004). Creating an index of social vulnerability to climate change for Africa. In Tyndall Centre for Climate Change Research (Issue August).

  • Wu, S.-Y., Yarnal, B., & Fisher, A. (2002). Vulnerability of coastal communities to sea-level rise: A case study of Cape May County, New Jersey, USA. Pattern Recognition Letters, 22(4), 255–270. https://doi.org/10.1016/0167-8655(89)90094-9

    Article  Google Scholar 

  • Yadav, D. K., & Barve, A. (2017). Analysis of socioeconomic vulnerability for cyclone-affected communities in coastal Odisha, India. International Journal of Disaster Risk Reduction, 22(February), 387–396. https://doi.org/10.1016/j.ijdrr.2017.02.003

    Article  Google Scholar 

  • Yang, S., He, S., Du, J., & Sun, X. (2015). Screening of social vulnerability to natural hazards in China. Natural Hazards, 76(1), 1–18. https://doi.org/10.1007/s11069-014-1225-1

    Article  Google Scholar 

  • Yin, J., Yin, Z., Wang, J., & Xu, S. (2012). National assessment of coastal vulnerability to sea-level rise for the Chinese coast. Journal of Coastal Conservation, 16(1), 123–133. https://doi.org/10.1007/s11852-012-0180-9

    Article  Google Scholar 

  • Yin, J., Yin, Z., & Xu, S. (2013). Composite risk assessment of typhoon-induced disaster for China’s coastal area. Natural Hazards, 69(3), 1423–1434. https://doi.org/10.1007/s11069-013-0755-2

    Article  Google Scholar 

  • Yoo, G., Kim, A. R., & Hadi, S. (2014). A methodology to assess environmental vulnerability in a coastal city: Application to Jakarta, Indonesia. Ocean and Coastal Management, 102, 169–177. https://doi.org/10.1016/j.ocecoaman.2014.09.018

    Article  Google Scholar 

Download references

Funding

This work is supported by the Department of Science and Technology (DST), Government of India [Grant number: DST/CCP/CoE/140/2018(G)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindhuja Kasthala.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix-1 Literature summary table

No

Reference

Spatial extent

Spatial granularity

Dimensions assessed

No. of indicators

Vulnerability assessment method

Weightage technique

1

V. Gornitz et al. (1991)

East Coast, USA

Continuous Coastline

PV

7

Unweighted aggregation

 ~ 

2

Gornitz et al. (1994)

East Coast, USA

Continuous Coastline

PV

13

Weighted aggregation (Implicit)

Function

3

Briguglio (1995)

Small Island Developing States (SIDS)

Country

EV + PV

3

Weighted aggregation (explicit)

Subjective

4

Clark et al. (1998)

Revere City, USA

Census Block

SEV

34

Weighted aggregation (Explicit)

DEA

5

Thieler and Hammar-Klose (1999)

Atlantic Coast, USA

Continuous Coastline

PV

6

Unweighted aggregation

 ~ 

6

Kaly et al. (1999)

Australia, Fiji and Tuvalu

Country

PV + SEV + EV

57

Weighted aggregation (explicit)

Subjective

7

Cutter et al. (2000)

South Carolina, USA

Census Block

SEV

20

Unweighted aggregation

 ~ 

8

Bryan et al. (2001)

Northern Spencer Gulf study

Continuous Coastline

PV

4

GIS-based

 ~ 

9

Davidson et al. (2001)

USA

County

SEV

27

Weighted aggregation (explicit)

AHP

10

Wu et al. (2002)

New Jersey, USA

Census Block

SEV

9

Unweighted aggregation

 ~ 

11

Villa and McLeod (2002)

South Pacific SIDS

Country

EV

47

Weighted aggregation (explicit)

Expert group

12

Cutter et al. (2003)

USA

County

SEV

42

Weighted aggregation (Implicit)

 ~ 

13

Vincent (2004)

Africa

Country

SEV

9

Weighted aggregation (explicit)

Subjective

14

NATCOM, p. 113 (2004)

East and West Coast, India

District

SEV

9

Clustering-based

 ~ 

15

Boruff et al. (2005)

US coast

County

PV + SEV

45

Weighted aggregation (Implicit)

 ~ 

16

Pendleton et al. (2005)

North Carolina, USA

Continuous Coastline

PV

6

Unweighted aggregation

 ~ 

17

Brooks et al. (2005)

Various countries

Country

SEV

11

Weighted aggregation (explicit)

Subjective

18

Doukakis. (2005)

Greece

Continuous Coastline

PV

6

Weighted aggregation (explicit)

Subjective

19

Kumpulainen (2006)

EU

Country

EV + SEV

4

Weighted aggregation (explicit)

Subjective

20

Kumar and Tholkappian (2006)

East and West Coast, India

District

PV + SEV

12

Unweighted aggregation

 ~ 

21

Rygel et al. (2006)

Hampton Roads, USA

Census Block

SEV

57

Weighted aggregation (Explicit)

Pareto ranking

22

Kleinosky et al. (2007)

Hampton Roads, USA

Census Block

SEV

57

Weighted aggregation (Explicit)

Pareto ranking

23

Diez et al. (2007)

Buenos Aires, Argentina

Continuous Coastline

PV

7

Weighted aggregation (explicit)

Subjective

24

Borden et al. (2007)

132 U.S. cities

City

SEV

78

Weighted aggregation (Implicit)

 ~ 

25

Szlafsztein and Sterr (2007)

Pará, Brazil

Municipal Districts

PV + SEV

16

GIS-based

Subjective

26

Boruff and Cutter (2007)

Caribbean island nations (Saint Vincent and Barbados)

Country

SEV

15

Weighted aggregation (Implicit)

 ~ 

27

Hegde and Reju (2007)

Mangalore, India

Continuous Coastline

PV + SEV

4

Unweighted aggregation

 ~ 

28

Cutter and Finch (2008)

USA

County

SEV

42

Weighted aggregation (Implicit)

 ~ 

29

Schmidtlein et al. (2008)

Charleston, South Carolina; Los Angeles, California; and New Orleans, Louisiana

County, Intermediate and Tract

level

SEV

33

Weighted aggregation (Implicit)

 ~ 

30

Shahid and Behrawan (2008)

Bangladesh

District

SEV

7

Unweighted aggregation

 ~ 

31

Sharma and Patwardhan (2008)

East and West Coast, India

District

PV + SEV

5

Clustering-based, Unweighted aggregation

 ~ 

32

Rao et al. (2008)

Andhra Pradesh, India

Continuous Coastline

PV

5

Weighted aggregation (explicit)

Subjective

33

Balica et al. (2009)

Various case studies

River basin, Sub-catchment and Urban area

PV + SEV + EV

28

Component-based aggregation

 ~ 

34

Fekete (2009)

Germany

County

SEV

41

Weighted aggregation (Implicit)

 ~ 

35

Dwarakish et al. (2009)

Udipi, Karnataka, India

Continuous Coastline

PV

6

Unweighted aggregation

 ~ 

36

Narayanan and Patnaik (2009)

East Coast, India

District

SEV

14

Unweighted aggregation

 ~ 

37

Hahn et al. (2009)

Mabote and Moma Districts, Mozambique

District

SEV

28

Unweighted aggregation

 ~ 

38

Burton (2010)

Mississippi’s Gulf Coast

County

SEV

32

Weighted aggregation (Implicit)

 ~ 

39

Balica and Wright (2010)

Various case studies

River basin, Sub-catchment and Urban area

PV + SEV + EV

71

Implicit Weighting

 ~ 

40

Gbetibouo et al. (2010)

South Africa

Provinces

EV + SEV

19

Weighted aggregation (Explicit)

PCA

41

Vincent and Cull (2010)

Maangani, South Africa

Household

SEV

7

Weighted aggregation (explicit)

Subjective

42

Kumar et al. (2010)

Orissa, India

Continuous Coastline

PV

8

Unweighted aggregation

 ~ 

43

Palmer et al. (2011)

KwaZulu-Natal, South Africa

Continuous Coastline

PV

7

Unweighted aggregation

 ~ 

44

Müller et al. (2011)

Chile

Municipality

SEV

12

GIS-based

Surveys

45

Sheik Mujabar and Chandrasekar (2013)

Tamilnadu, India

Continuous Coastline

PV

6

Unweighted aggregation

 ~ 

46

Holand et al. (2011)

Norway

Municipality

SEV

33

Weighted aggregation (Implicit)

 ~ 

47

Mahendra et al. (2011)

Cuddalore-villupuram, India

Continuous Coastline

PV

4

GIS-based

 ~ 

48

Orencio and Fujii (2013)

Baler, Aurora, Philippines

Community

EV + SEV

21

Unweighted aggregation

 

49

Balica et al. (2012)

BuenosAires, Calcutta & 7 other cities

City

PV + SEV

19

Component-based aggregation

 ~ 

50

Farhan and Lim (2012)

Seribu Islands, Indonesia

Islands

EV

5

GIS-based

Subjective

51

Yin et al. (2012)

China

Continuous Coastline

PV

8

Weighted aggregation (explicit)

AHP

52

Arun Kumar and Kunte (2012)

Chennai, India

Continuous Coastline

PV

8

Unweighted aggregation

 ~ 

53

INCOIS (2012)

Coastal India

Continuous Coastline

PV

7

Unweighted aggregation

 ~ 

54

Yin et al. (2013)

Coastal China

Community

PV + SEV

14

Weighted aggregation (explicit)

AHP

55

Joevivek et al. (2013)

Southern Tamilnadu, India

District

PV

6

Unweighted aggregation

 ~ 

56

Addo (2013)

Accra, Ghana

Continuous Coastline

PV

7

Unweighted aggregation

 ~ 

57

Ge et al. (2013)

Yangtze River Delta, China

Continuous Coastline

SEV

9

Weighted aggregation (Implicit)

PPC

58

Saxena et al. (2013)

Cuddalore, Tamilnadu, India

Continuous Coastline

PV + SEV

75

Weighted aggregation (explicit)

AHP

59

Murali et al. (2013)

Puducherry, India

County

PV + SEV

11

Weighted aggregation (explicit)

AHP

60

Armaș and Gavriș (2013)

Bucharest, Romania

Settlement/Community

SEV

18

Weighted aggregation (Implicit)

subjective

61

Felsenstein and Lichter (2014)

Israel

Continuous Coastline

SEV

6

Weighted aggregation (explicit)

Subjective

62

Siagian et al. (2014)

Indonesia

District

SEV

10

Weighted aggregation (Implicit)

PCA

63

Islam et al. (2014)

Bangladesh Coast

Community

PV + SEV

25

Component-based aggregation

 ~ 

64

Ahsan and Warner (2014)

southwest Bangladesh

Community

SEV

27

Weighted aggregation (explicit)

Subjective

65

Lixin et al. (2014)

323 cities in China

City

SEV

12

Weighted aggregation (explicit)

Subjective

66

González-Riancho et al. (2014)

El Salvador coast

Municipality

EV + SEV

24

Weighted aggregation (explicit)

Subjective

67

Lee (2014)

Taiwan

Township

SEV

13

Unweighted aggregation

 ~ 

68

Yoo et al. (2014)

Jakarta, Indonesia

Municipal District

EV + SEV

10

Component-based aggregation

Subjective

69

Kunte et al. (2014)

Goa, India

Continuous Coastline

PV + SEV

9

Unweighted aggregation

 ~ 

70

Bahinipati (2014)

Odisha, India

District

PV + SEV

36

Weighted aggregation (Implicit)

 ~ 

71

Yang et al. (2015)

China

Provinces

SEV

115

Weighted aggregation (Implicit)

 ~ 

72

Mahapatra et al. (2015)

South Gujarat, India

Continuous Coastline

PV + SEV

9

Weighted aggregation (explicit)

AHP

73

Bergstrand et al. (2015)

USA

County

SEV

30

Weighted aggregation (Implicit)

 ~ 

74

Salik et al. (2015)

Pakistan

Household

EV + SEV

32

Component-based aggregation

 ~ 

75

Su et al. (2015)

Chinese coastal cities

City

SEV

17

Component-based aggregation

 ~ 

76

Sherly et al. (2015)

Mumbai, India

Ward

SEV

33

Weighted aggregation (Explicit)

DEA

77

Maiti et al. (2015)

East Coast, India

District

PV + SEV

43

Component-based aggregation

PCA

78

Fernandez et al. (2016)

Vila Nova de Gaia, Portugal

Municipality

SEV

26

GIS-based

AHP

79

Colburn et al. (2016)

East & Gulf Coast, US

Community

SEV

25

Weighted aggregation (Implicit)

 ~ 

80

Mansur et al. (2016)

Amazon Delta & Estuary

Urban sector

SEV

13

Weighted aggregation (explicit)

AHP

81

Yadav and Barve (2017)

Odisha, India

Household

SEV

29

Component-based aggregation

 ~ 

82

Stafford and Abramowitz (2017)

Hampton Roads, USA

Census tract/ Sub-county

SEV

41

Clustering-based, Weighted aggregation (Implicit)

PCA

83

Mazumdar and Paul (2018)

Odisha, India

Census Block

SEV

32

Weighted aggregation (Implicit)

 ~ 

84

Sahoo and Bhaskaran (2018)

Odisha, India

District

PV + SEV + EV

16

Weighted aggregation (Implicit)

 ~ 

Appendix-II List of indicators and frequency of occurrence (among 84 studies):

2.1 Physical Vulnerability

  1. 1.

    Shoreline change—29.76% (25 among 84 studies)

  2. 2.

    Geomorphology—27.38% (23)

  3. 3.

    Significant wave height—26.19% (22)

  4. 4.

    Sea-level rise—26.19% (22)

  5. 5.

    Tidal range—25% (21)

  6. 6.

    Coastal slope—23.80% (20)

  7. 7.

    Coastal elevation—16.67% (14)

  8. 8.

    Coast length—8.33% (7)

  9. 9.

    Geology—5.95% (5)

  10. 10.

    Topography—4.76% (4)

  11. 11.

    Distance from sea/river—3.57% (3)

  12. 12.

    Coast length—2.38% (2)

  13. 13.

    Insularity—2.38% (2)

  14. 14.

    Drainage—2.38% (2)

2.2 Socio-Economic Vulnerability

  1. 1.

    Population, population density—42.88% (36)

  2. 2.

    Age, gender (vulnerable population)—42.88% (36)

  3. 3.

    Income, poverty—35.71% (30)

  4. 4.

    Housing infrastructure (quality, price, rented/own, old/new, disaster-resistant, etc.)—34.52% (29)

  5. 5.

    Literacy—29.76% (25)

  6. 6.

    Employment rate, total employed, labour force—28.57% (24)

  7. 7.

    Critical infrastructure (hospitals, etc.)—21.42% (18)

  8. 8.

    Family structure (size)—20.23% (17)

  9. 9.

    GDP—19.04% (16)

  10. 10.

    Disabled population—16.67% (14)

  11. 11.

    Roads and other transport—15.47% (13)

  12. 12.

    Urban or rural—14.28% (12)

  13. 13.

    Education level—14.28% (12)

  14. 14.

    Marginalized population (socioeconomic status)—14.28% (12)

  15. 15.

    Agriculture dependency (area under cultivation, etc.)—14.28% (12)

  16. 16.

    Population growth—13.09% (11)

  17. 17.

    Race and ethnicity—13.09% (11)

  18. 18.

    Sanitation, drainage—13.09% (11)

  19. 19.

    Female employment—11.90% (10)

  20. 20.

    Occupational structure—11.90% (10)

  21. 21.

    Energy, electricity—11.90% (10)

  22. 22.

    Emergency infrastructure (cyclone shelters, etc.)—11.90% (10)

  23. 23.

    Water supply—10.71% (9)

  24. 24.

    Information, awareness & internet facilities—10.71% (9)

  25. 25.

    Vehicle ownership—9.52% (8)

  26. 26.

    Warning & evacuation system—9.52% (8)

  27. 27.

    Cultural heritage, tourist density—8.33% (7)

  28. 28.

    Infrastructure management—8.33% (7)

  29. 29.

    Built density—8.33% (7)

  30. 30.

    Infant mortality rate—7.14% (6)

  31. 31.

    Birth rate, death rate—7.14% (6)

  32. 32.

    Migration—7.14% (6)

  33. 33.

    Past experience/ recovery time—7.14% (6)

  34. 34.

    Institutional infrastructure—7.14% (6)

  35. 35.

    Communication (radio, television, phones, etc.)—7.14% (6)

  36. 36.

    Female literacy—5.95% (5)

  37. 37.

    Deaths/ mortality—5.95% (5)

  38. 38.

    Life expectancy—5.95% (5)

  39. 39.

    Human Development Index—5.95% (5)

  40. 40.

    Non-workers—5.95% (5)

  41. 41.

    Availability of capital (human, social, natural, financial & physical)—5.95% (5)

  42. 42.

    Damaged houses, houseless population—4.76% (4)

  43. 43.

    Agricultural labourers—4.76% (4)

  44. 44.

    Livestock population—4.76% (4)

  45. 45.

    Irrigation—4.76% (4)

  46. 46.

    Food production (rice, milk, eggs, etc.)—4.76% (4)

  47. 47.

    Insurance, security—4.76% (4)

  48. 48.

    Educational infrastructure—4.76% (4)

  49. 49.

    Household industry workers—3.57% (3)

  50. 50.

    Marginal workers—3.57% (3)

  51. 51.

    Spread of institutional setup—3.57% (3)

  52. 52.

    Agriculture productivity, crop diversification—3.57% (3)

  53. 53.

    Fishing vessels and methods—3.57% (3)

  54. 54.

    Food security—3.57% (3)

  55. 55.

    Community participation—3.57% (3)

  56. 56.

    Banking facilities—3.57% (3)

  57. 57.

    Assets—3.57% (3)

  58. 58.

    Hazardous waste infrastructure, toxic waste—3.57% (3)

  59. 59.

    Storage capacity (dams)—3.57% (3)

  60. 60.

    Commercial and industrial development—2.38% (2)

  61. 61.

    Consumption of fertilizers—2.38% (2)

  62. 62.

    Cropping intensity—2.38% (2)

  63. 63.

    Damage to croplands—2.38% (2)

  64. 64.

    Gini coefficient—2.38% (2)

  65. 65.

    Investments in research and development—2.38% (2)

  66. 66.

    Commercial infrastructure—2.38% (2)

  67. 67.

    Industries—2.38% (2)

  68. 68.

    Isolated areas—1.19% (1)

  69. 69.

    Duration in current occupation—1.19% (1)

  70. 70.

    Government Effectiveness—1.19% (1)

  71. 71.

    Manufacturing (infrastructure)—1.19% (1)

  72. 72.

    Small-scale industries—1.19% (1)

  73. 73.

    Access to basic services—1.19% (1)

  74. 74.

    Cooperative societies—1.19% (1)

  75. 75.

    Nuclear facilities—1.19% (1)

2.3 Environmental Vulnerability

  1. 1.

    Landuse Landcover changes—16.67% (14)

  2. 2.

    Protected areas, reserves—5.95% (5)

  3. 3.

    Coral extraction, sand/gravel/other extraction—4.76% (4)

  4. 4.

    Ecosystem changes—3.57% (3)

  5. 5.

    Biodiversity—3.57% (3)

  6. 6.

    Wetland valuation—2.38% (2)

  7. 7.

    Environmental development projects—2.38% (2)

  8. 8.

    Deforestation/ forest change rate—2.38% (2)

  9. 9.

    Mangroves (health, depletion, etc.)—2.38% (2)

  10. 10.

    Threatened/degraded ecosystems—2.38% (2)

  11. 11.

    Unpopulated area—2.38% (2)

  12. 12.

    Evaporation rate—2.38% (2)

  13. 13.

    Degraded growth/ area—2.38% (2)

  14. 14.

    Pollution, pollutant area—2.38% (2)

  15. 15.

    Hazardous waste—1.19% (1)

  16. 16.

    Access to ecosystem services—1.19% (1)

  17. 17.

    Overfishing—1.19% (1)

  18. 18.

    Endemic species—1.19% (1)

  19. 19.

    Pathogen outbreaks—1.19% (1)

  20. 20.

    War or civil strife—1.19% (1)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasthala, S., Parthasarathy, D., Narayanan, K. et al. Classification and Evaluation of Current Climate Vulnerability Assessment Methods. Soc Indic Res 171, 605–639 (2024). https://doi.org/10.1007/s11205-023-03271-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11205-023-03271-x

Keywords

Navigation