Skip to main content

Advertisement

Log in

Estimation of Disaggregate-Level Poverty Incidence in Odisha Under Area-Level Hierarchical Bayes Small Area Model

  • Published:
Social Indicators Research Aims and scope Submit manuscript

Abstract

Sustainable development goal-1 of the United Nations is to end poverty in all its forms everywhere. The estimates of poverty related parameters obtained from large scale sample survey are often available at large domain level (e.g. state level). But, poverty rates are not uniformly distributed across the regions. The regional variations are masked in such large domain level estimates. However, for monitoring the progress of poverty alleviation programmes aimed at reduction of poverty often require micro or disaggregate level estimates. The traditional survey estimation approaches are not suitable for generating the reliable estimates at this level because of sample size problem. It is the main endeavor of Small Area Estimation (SAE) approach to produce micro level statistics with acceptable precision without incurring any extra cost and utilizing existing survey data. In this study, the Hierarchical Bayes approach of SAE has been applied to generate reliable and representative district level poverty incidence for the State of Odisha in India using the Household Consumer Expenditure Survey 2011–2012 data of National Sample Survey Office and linked with Population Census 2011. The results show the precise performance of model based estimates generated by SAE method to a greater extent than the direct survey estimates. A poverty map has also been produced to observe the spatial inequality in poverty distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benjamin, M., Stoker, T., & Suri, T. (2013). The economics of slums in the developing world. Journal of Economic Perspectives, 27(4), 187–210.

    Article  Google Scholar 

  • Census. (2011). Primary Census Abstracts, Registrar General of India, Ministry of Home Affairs, Government of India. http://www.censusindia.gov.in/2011census/population_enumeration.html.

  • Chandra, H. (2013). Exploring spatial dependence in area-level random effect model for disaggregate-level crop yield estimation. Journal of Applied Statistics, 40(4), 823–842.

    Article  Google Scholar 

  • Chandra, H., Aditya, K., & Sud, U. C. (2018a). Localised estimates and spatial mapping of poverty incidence in the state of Bihar in India-an application of small area estimation techniques. PLoS ONE. https://doi.org/10.1371/journal.pone.0198502.

    Google Scholar 

  • Chandra, H., Salvati, N., & Chambers, R. (2017). Small area prediction of counts under a non-stationary spatial model. Spatial Statistics, 20, 30–56.

    Article  Google Scholar 

  • Chandra, H., Salvati, N., & Chambers, R. (2018b). Small area estimation under a spatially non-linear model. Computational Statistics & Data Analysis, 126, 19–38.

    Article  Google Scholar 

  • Chandra, H., Salvati, N., & Sud, U. C. (2011). Disaggregate-level estimates of indebtedness in the state of Uttar Pradesh in India—An application of small area estimation technique. Journal of Applied statistics, 38(11), 2413–2432.

    Article  Google Scholar 

  • Chaudhuri, S., & Gupta, N. (2009). Levels of living and poverty patterns: A district-wise analysis for India. Economic & Political Weekly, XLIV(9), 94–110.

    Google Scholar 

  • Chauhan, R. K., Mohanty, S. K., Subramanian, S. V., Parida, J. K., & Padhi, B. (2016). Regional estimates of poverty and inequality in India, 1993–2012. Social Indicators Research, 127, 1249–1296.

    Article  Google Scholar 

  • Coondoo, D., Majumder, A., & Chattopadhyay, S. (2011). District-level poverty estimation: A proposed method. Journal of Applied Statistics, 38(10), 2327–2343.

    Article  Google Scholar 

  • Fay, R. E., & Herriot, R. A. (1979). Estimates of income for small places: An application of James–Stein procedures to census data. Journal of the American Statistical Association, 74, 269–277.

    Article  Google Scholar 

  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515–533.

    Article  Google Scholar 

  • Ghosh, M., Kim, D., Sinha, K., Maiti, T., Katzoff, M., & Parsons, V. L. (2009). Hierarchical and empirical Bayes small domain estimation of the proportion of persons without health insurance of minority subpopulations. Survey Methodology, 35, 53–66.

    Google Scholar 

  • Government of India. (2017). Millennium development goalsFinal country report of India. Central Statistics Office, Ministry of Statistics and Programme Implementation, Government of India. http://mospi.nic.in/sites/dfault/files/publication_reports/MDG_Final_Country_report_of_India_27nov17.pdf. Accessed 27 Nov 2017.

  • Jiang, J., & Lahiri, P. (2006). Mixed model prediction and small area estimation. Test, 15, 111–999.

    Article  Google Scholar 

  • Kabeer, N. (1994). “Beyond the poverty line: Measuring poverty and impoverishing measures” in reversed realities: Gender hierarchies in development thoughts (pp. 136–162). London: Yerso.

    Google Scholar 

  • Kish, L. (1965). Survey sampling. New York: Wiley.

    Google Scholar 

  • Lee, D., Minton, J., & Pryce, G. (2015). Bayesian inference for the dissimilarity index in the presence of spatial autocorrelation. Spatial Statistics, 11, 81–95.

    Article  Google Scholar 

  • Liu, B., Lahiri, P., & Kalton, G. (2014). Hierarchical Bayes modeling of survey-weighted small area proportions. Survey Methodology, 40, 1–13.

    Google Scholar 

  • Mohanty, S. K., Govil, D., Chauhan, R. K., Kim, R., & Subramanian, S. V. (2016). Estimates of poverty and inequality in the districts of India, 2011–2012. Journal of Development Policy and Practice, 1(2), 142–202.

    Article  Google Scholar 

  • Molina, I., Salvati, N., & Pratesi, M. (2009). Bootstrap for estimating the MSE of the spatial EBLUP. Computational Statistics, 24, 441–458.

    Article  Google Scholar 

  • Narayana, D., & Petesch, P. (2002). Voices of the poor: From many lands World Bank. New York: Oxford University Press.

    Google Scholar 

  • Portar, A. T., Holan, S. H., Wikle, C. K., & Cressie, N. (2014). Spatial Fay–Herriot models for small area estimation with functional covariates. Spatial Statistics, 10, 27–42.

    Article  Google Scholar 

  • Pratesi, M., & Salvati, N. (2009). Small area estimation in presence of correlated random area effects. Journal of Official Statistics, 25, 37–53.

    Google Scholar 

  • Pratesi, M., & Salvati, N. (2016). Introduction on measuring poverty at local level using small area estimation methods. Pratesi/Analysis of poverty data by small area estimation (pp. 1–18). New York: Wiley.

    Google Scholar 

  • Rao, J. N. K. (2003). Small area estimation. New York: Wiley.

    Book  Google Scholar 

  • Rao, J. N. K., & Molina, I. (2015). Small area estimation (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Sen, A. K. (1981). Poverty and famines: An essay on entitlements and deprivation. Oxford: Clarendon Press.

    Google Scholar 

  • Souza, D. F., Moura, F. A. S., & Migon, H. S. (2009). Small area population prediction via hierarchical models. Survey Methodology, 35, 203–214.

    Google Scholar 

  • United Nations. (2017). The sustainable development goals report. http://www.un.org/sustainabledevelopment/poverty/. Accessed 15 Dec 2017.

  • You, Y. (2008). An integrated modeling approach to unemployment rate estimation for sub-provincial areas of Canada. Survey Methodology, 34, 19–27.

    Google Scholar 

  • You, Y., & Rao, J. N. K. (2002). Small area estimation using unmatched sampling and linking models. The Canadian Journal of Statistics, 30, 3–15.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the valuable comments and suggestions of the Editor and two anonymous referees. These led to a considerable improvement in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Anjoy.

Appendix

Appendix

Full conditional distributions for the Gibbs sampler under four HB models are presented below. Let, \(\tilde{p}\, = \,\left( {p_{1w} , \ldots ,p_{mw} } \right)^{T}\), \({\mathbf{P}}\, = \,\left( {P_{1} , \ldots ,P_{m} } \right)^{T}\), \({\mathbf{X}}\, = \,\left( {{\mathbf{x}}_{1}^{T} , \ldots ,{\mathbf{x}}_{m}^{T} } \right)^{T}\), \({\mathbf{x}}_{i}^{T} = \,\left( {x_{i1} , \ldots ,x_{ik} } \right)\), \({\varvec{\upbeta}}\,{ = }\,\left( {\beta_{1} , \ldots ,\beta_{k} } \right)^{T}\) and k represents number of auxiliary variates and usually \(x_{i1}\) is taken to be 1 \(\forall \,\,{\text{i = }}\,1, \ldots ,{\text{m}}\).

The full conditional distributions for the M1 are given as,

  1. (1)
    $$P_{i} \,|\,{\varvec{\upbeta}},\,\sigma_{v}^{2} ,\,\tilde{p}\sim\,N\,\left( {\frac{{\sigma_{v}^{2} }}{{\sigma_{v}^{2} + \,\sigma_{ei}^{2} }}\,p_{iw} \, + \,\frac{{\sigma_{ei}^{2} }}{{\sigma_{v}^{2} + \,\sigma_{ei}^{2} }}{\mathbf{x}}_{i}^{T} {\varvec{\upbeta}},\,\frac{{\sigma_{ei}^{2} \sigma_{v}^{2} }}{{\sigma_{v}^{2} + \,\sigma_{ei}^{2} }}} \right)\,;$$
  2. (2)
    $${\varvec{\upbeta}}\, |\,P_{i} ,\,\sigma_{v}^{2} ,\,{\tilde{\text{p}}}\,\sim\,{\text{N}}\,\,\left( {\left( {{\mathbf{X}}^{T} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{T} {\mathbf{P}} ,\,\sigma_{\text{v}}^{ 2} \left( {{\mathbf{X}}^{T} {\mathbf{X}}} \right)^{ - 1} } \right)\,;$$
  3. (3)
    $$\sigma_{v}^{2} \,|\,{\varvec{\upbeta}},\,P_{i} ,\,\tilde{p}\,\sim\,IG\,\left( {a + \frac{m}{2},\,\,b + \,\frac{{\sum\limits_{i = 1}^{m} {\left( {P_{i} \, - \,{\mathbf{x}}_{i}^{T} {\varvec{\upbeta}}} \right)^{2} } }}{2}} \right).$$

The full conditional distributions for the M2 are given as follows,

  1. (1)
    $$P_{i} \,|\,{\varvec{\upbeta}},\,\sigma_{v}^{2} ,\,\tilde{p}\, \propto \,\frac{1}{{P_{i} \,\left( {1 - \,P_{i} } \right)\sqrt {\sigma_{ei}^{2} \sigma_{v}^{2} } \,}}\,\exp \left( { - \,\frac{{\left( {p_{iw} \, - P_{i} \,\,} \right)^{2} }}{{2\sigma_{ei}^{2} }}\, - \,\frac{{\left( {\log it\left( {P_{i} } \right)\, - {\mathbf{x}}_{i}^{T} {\varvec{\upbeta}}\,\,} \right)^{2} }}{{2\sigma_{v}^{2} }}} \right)\,;$$
  2. (2)
    $${\varvec{\upbeta}}\, |\,{\text{P}}_{\text{i}} ,\,\sigma_{\text{v}}^{ 2} ,\,{\tilde{\text{p}}}\sim\,{\text{N}}\,\,\left( {\left( {{\mathbf{X}}^{T} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{T} {\text{logit}}({\mathbf{P}}) ,\,\sigma_{\text{v}}^{ 2} \left( {{\mathbf{X}}^{T} {\mathbf{X}}} \right)^{ - 1} } \right)\,;$$
  3. (3)
    $$\sigma_{v}^{2} \,|\,{\varvec{\upbeta}},\,P_{i} ,\,\tilde{p}\,\sim\,IG\,\left( {a + \frac{m}{2},\,\,b + \,\frac{{\sum\limits_{i = 1}^{m} {\left( {\log it\left( {P_{i} } \right) - \,{\mathbf{x}}_{i}^{T} {\varvec{\upbeta}}} \right)^{2} } }}{2}} \right).$$

The full conditional distributions for the M3 are given as below,

  1. (1)
    $$P_{i} \,|\,{\varvec{\upbeta}},\,\sigma_{v}^{2} ,\,\tilde{p}\, \propto \,\frac{1}{{P_{i} \,\left( {1 - \,P_{i} } \right)\sqrt {\,\,\xi_{i} \sigma_{v}^{2} } \,}}\,\exp \left( { - \,\frac{{\left( {p_{iw} \, - P_{i} } \right)^{2} }}{{2\,\xi_{i} }}\, - \,\frac{{\left( {\log it\left( {P_{i} } \right)\, - {\mathbf{x}}_{i}^{T} {\varvec{\upbeta}}\,\,} \right)^{2} }}{{2\sigma_{v}^{2} }}} \right)\,;$$
  2. (2)
    $${\varvec{\upbeta}}\, |\,P_{i} ,\,\sigma_{\text{v}}^{ 2} ,\,{\tilde{\text{p}}}\,\sim\,{\text{N}}\,\,\left( {\left( {{\mathbf{X}}^{T} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{T} {\text{logit}}\left( {\mathbf{P}} \right) ,\,\sigma_{\text{v}}^{ 2} \left( {{\mathbf{X}}^{T} {\mathbf{X}}} \right)^{ - 1} } \right)\,;$$
  3. (3)
    $$\sigma_{v}^{2} \,|\,{\varvec{\upbeta}},\,P_{i} ,\,\tilde{p}\,\sim\,IG\,\left( {a\, + \frac{m}{2},\,\,b\,\, + \,\,\frac{{\sum\limits_{i = 1}^{m} {\left( {\log it\,\left( {P_{i} } \right)\, - \,{\mathbf{x}}_{i}^{T} {\varvec{\upbeta}}} \right)^{2} } }}{2}} \right).$$

Let, \(\delta_{i} \, = \,\frac{{n_{i} }}{{deff_{i} }} - 1\).

Then the full conditional distributions for the M4 are given as follows,

  1. (1)
    $$P_{i} \,|\,{\varvec{\upbeta}},\,\sigma_{v}^{2} ,\,\tilde{p}\, \propto \,\frac{1}{{P_{i} \,\left( {1 - \,P_{i} } \right)\sqrt {\,\,\sigma_{v}^{2} } \,}}\,\frac{{p_{iw}^{{P_{i} \delta_{i} \, - \,1}} \,\left( {1 - \,p_{iw} } \right)^{{(1 - \,P_{i} )\delta_{i} \, - \,1}} }}{{\varGamma \,\left( {P_{i} \delta_{i} } \right)\,\varGamma \left( {\left( {1 - \,P_{i} } \right)\delta_{i} } \right)\,}}\exp \left( { - \,\,\frac{{\left( {\log it\left( {P_{i} } \right)\, - {\mathbf{x}}_{i}^{T} {\varvec{\upbeta}}\,\,} \right)^{2} }}{{2\sigma_{v}^{2} }}} \right)\,;$$
  2. (2)
    $${\varvec{\upbeta}}\, |\,P_{i} ,\,\sigma_{\text{v}}^{ 2} ,\,{\tilde{\text{p}}}\,\sim\,{\text{N}}\,\,\left( {\left( {{\mathbf{X}}^{T} {\mathbf{X}}} \right)^{ - 1} {\mathbf{X}}^{T} {\text{logit}}\left( {\mathbf{P}} \right) ,\,\sigma_{\text{v}}^{ 2} \left( {{\mathbf{X}}^{T} {\mathbf{X}}} \right)^{ - 1} } \right)\,;$$
  3. (3)
    $$\sigma_{v}^{2} \,|\,{\varvec{\upbeta}},\,P_{i} ,\,\tilde{p}\,\sim\,IG\,\left( {a\, + \frac{m}{2},\,\,b\,\, + \,\,\frac{{\sum\limits_{i = 1}^{m} {\left( {\log it\,\left( {P_{i} } \right)\, - \,{\mathbf{x}}_{i}^{T} {\varvec{\upbeta}}} \right)^{2} } }}{2}} \right).$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjoy, P., Chandra, H. & Basak, P. Estimation of Disaggregate-Level Poverty Incidence in Odisha Under Area-Level Hierarchical Bayes Small Area Model. Soc Indic Res 144, 251–273 (2019). https://doi.org/10.1007/s11205-018-2050-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11205-018-2050-9

Keywords

Navigation