Skip to main content
Log in

Periodic autoregressive stochastic volatility

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

This paper proposes a stochastic volatility model (PAR-SV) in which the log-volatility follows a first-order periodic autoregression. This model aims at representing time series with volatility displaying a stochastic periodic dynamic structure, and may then be seen as an alternative to the familiar periodic GARCH process. The probabilistic structure of the proposed PAR-SV model such as periodic stationarity and autocovariance structure are first studied. Then, parameter estimation is examined through the quasi-maximum likelihood (QML) method where the likelihood is evaluated using the prediction error decomposition approach and Kalman filtering. In addition, a Bayesian MCMC method is also considered, where the posteriors are given from conjugate priors using the Gibbs sampler in which the augmented volatilities are sampled from the Griddy Gibbs technique in a single-move way. As a-by-product, period selection for the PAR-SV is carried out using the (conditional) deviance information criterion (DIC). A simulation study is undertaken to assess the performances of the QML and Bayesian Griddy Gibbs estimates in finite samples while applications of Bayesian PAR-SV modeling to daily, quarterly and monthly S&P 500 returns are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aknouche A, Al-Eid E (2012) Asymptotic inference of unstable periodic \(ARCH\) processes. Stat. Inference Stoch. Process. 15:61–79

    Article  MathSciNet  MATH  Google Scholar 

  • Aknouche A, Bibi A (2009) Quasi-maximum likelihood estimation of periodic \(GARCH\) and periodic \(ARMA\)-\(GARCH\) processes. J. Time Ser. Anal. 30:19–46

    Article  MathSciNet  MATH  Google Scholar 

  • Berg A, Meyer R, Yu J (2004) Deviance information criterion for comparing stochastic volatility models. J. Bus. Econ. Stat. 22:107–120

    Article  MathSciNet  Google Scholar 

  • Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Bollerslev T, Ghysels E (1996) Periodic autoregressive conditional heteroskedasticity. J. Bus. Econ. Stat. 14:139–151

    Google Scholar 

  • Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Breidt FJ (1997) A threshold autoregressive stochastic volatility. http://citeseer.ist.psu.edu/103850.html

  • Breidt FJ, Crato N, De Lima P (1998) The detection and estimation of long memory in stochastic volatility. J. Econ. 83:325–348

    Article  MathSciNet  MATH  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Carvalho CM, Lopes HF (2007) Simulation-based sequential analysis of Markov switching stochastic volatility models. Comput Stat Data Anal 51:4526–4542

    Article  MathSciNet  MATH  Google Scholar 

  • Celeux G, Forbes F, Robert CP, Titterington DM (2006) Deviance information criteria for missing data models. Bayesian Anal 1:651–674

    Article  MathSciNet  MATH  Google Scholar 

  • Chan CC, Grant AL (2014) Issues in comparing stochastic volatility models using the deviance information criterion. CAMA Working Paper 51/2014. Australian National University

  • Chib S, Nardari F, Shephard N (2002) Markov chain Monte Carlo methods for stochastic volatility models. J. Econ. 108:281–316

    Article  MathSciNet  MATH  Google Scholar 

  • Davis RA, Mikosch T (2009) Probabilistic properties of stochastic volatility models. In: Mikosch Thomas (ed) Handbook of financial time series, vol Part 2. Springer, Berlin, pp 255–267

    Chapter  Google Scholar 

  • Dunsmuir W (1979) A central limit theorem for parameter estimation in stationary vector time series and its applications to models for a signal observed with noise. Ann Stat 7:490–506

    Article  MathSciNet  MATH  Google Scholar 

  • Francq C, Zakoïan JM (2010) GARCH models: structure, statistical inference and financial applications. Wiley, New York

    Book  MATH  Google Scholar 

  • Francq C, Zakoïan JM (2006) Linear-representation bases estimation of stochastic volatility models. Scand J Stat 33:785–806

    Article  MATH  Google Scholar 

  • Geweke J (1989) Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57:1317–1339

    Article  MathSciNet  MATH  Google Scholar 

  • Geyer CJ (1992) Practical Markov Chain Monte Carlo. Stat Sci 7:473–511

    Article  Google Scholar 

  • Ghysels E, Harvey AC, Renault E (1996) Stochastic volatility. In: Rao CR, Maddala GS (eds) Statistical Methods in Finance. North-Holland, Amsterdam

    Google Scholar 

  • Ghysels E, Osborn D (2001) The econometric analysis of seasonal time series. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Gladyshev EG (1961) Periodically correlated random sequences. Sov Math 2:385–388

    MATH  Google Scholar 

  • Harvey AC, Ruiz E, Shephard N (1994) Multivariate stochastic variance models. Rev Econ Stud 61:247–264

    Article  MATH  Google Scholar 

  • Hylleberg S, Engle RF, Granger CWJ, Yoo BS (1990) Seasonal integration and cointegration. J Econ 44:215–238

    Article  MathSciNet  MATH  Google Scholar 

  • Jacquier E, Polson NG, Rossi PE (1994) Bayesian analysis of stochastic volatility models. J Bus Econ Stat 12:413–417

    MATH  Google Scholar 

  • Kim S, Shephard N, Chib S (1998) Stochastic volatility: likelihood inference and comparison with \(ARCH\) models. Rev Econ Stud 65:361–393

    Article  MATH  Google Scholar 

  • Koopman SJ, Ooms M, Carnero MA (2007) Periodic seasonal \(Reg\)-\(ARFIMA\)-\(GARCH\) models for daily electricity spot prices. J Am Stat Assoc 102:16–27

    Article  MathSciNet  MATH  Google Scholar 

  • Ljung L, Söderström T (1983) Theory and practice of recursive identification. MIT Press, Cambridge

    MATH  Google Scholar 

  • Meyn S, Tweedie R (2009) Markov chains and stochastic stability, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Nakajima J, Omori Y (2009) Leverage, heavy-tails and correlated jumps in stochastic volatility models. Comput Stat Data Anal 53:2335–2353

    Article  MathSciNet  MATH  Google Scholar 

  • Omori Y, Chib S, Shephard N, Nakajima J (2007) Stochastic volatility with leverage: fast and efficient likelihood inference. J Econ 140:425–449

    Article  MathSciNet  MATH  Google Scholar 

  • Osborn DR, Savva CS, Gill L (2008) Periodic dynamic conditional correlations between stock markets in Europe and the US. J Financ Econ 6:307–325

    Google Scholar 

  • Regnard N, Zakoïan JM (2011) A conditionally heteroskedastic model with time-varying coefficients for daily gas spot prices. Energy Econ 33:1240–1251

    Article  Google Scholar 

  • Ritter C, Tanner MA (1992) Facilitating the Gibbs sampler: the Gibbs stopper and the Griddy-Gibbs sampler. J Am Stat Assoc 87:861–870

    Article  Google Scholar 

  • Ruiz E (1994) Quasi-maximum likelihood estimation of stochastic variance models. J Econ 63:284–306

    Article  Google Scholar 

  • Sakai H, Ohno S (1997) On backward periodic autoregressive processes. J Time Ser Anal 18:415–427

    Article  MathSciNet  MATH  Google Scholar 

  • Shiller RJ (2015) Irrational exuberance, 3rd edn. Princeton University Press, Princeton

    Book  Google Scholar 

  • Sigauke C, Chikobvu D (2011) Prediction of daily peak electricity demand in South Africa using volatility forecasting models. Energy Econ 33:882–888

    Article  Google Scholar 

  • So MKP, Lam K, Li WK (1998) A stochastic volatility model with Markov switching. J Bus Econ Stat 16:244–253

    MathSciNet  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B64:583–639

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor JW (2006) Density forecasting for the efficient balancing of the generation and consumption of electricity. Int J Forecast 22:707–724

    Article  Google Scholar 

  • Taylor SJ (1982) Financial returns modelled by the product of two stochastic processes—a study of daily sugar prices, 1961–1979. In: Anderson OD (ed) Time series analysis: theory and practice. North-Holland, Amsterdam, pp 203–226

    Google Scholar 

  • Tiao GC, Grupe MR (1980) Hidden periodic autoregressive-moving average models in time series data. Biometrika 67:365–373

    MathSciNet  MATH  Google Scholar 

  • Tsay RS (2010) Analysis of financial time series: financial econometrics, 3rd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Tsiakas I (2006) Periodic stochastic volatility and fat tails. J Financ Econ 4:90–135

    Google Scholar 

  • Zhu L, Carlin BP (2000) Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion. Stat Med 19:2265–2278

    Article  Google Scholar 

Download references

Acknowledgments

I am deeply grateful to the Editor-In-Chief Prof. Marc Hallin, an Associate Editor and two Referees for their careful reading, helpful comments and useful suggestions that have greatly helped me in substantially improving the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhakim Aknouche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aknouche, A. Periodic autoregressive stochastic volatility. Stat Inference Stoch Process 20, 139–177 (2017). https://doi.org/10.1007/s11203-016-9139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-016-9139-z

Keywords

Mathematics Subject Classification

Navigation