Skip to main content
Log in

Time-migration velocity estimation using Fréchet derivatives based on nonlinear kinematic migration/demigration solvers

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Advanced seismic imaging and inversion are dependent on a velocity model that is sufficiently accurate to render reliable and meaningful results. For that reason, methods for extracting such velocity models from seismic data are always in high demand and are topics of active investigation. Velocity models can be obtained from both the time and depth domains. Relying on the former, time migration is an inexpensive, quick and robust process. In spite of its limitations, especially in the case of complex geologies, time migration can, in many instances (e.g. simple to moderate geological structures), produce image results compatible to the those required for the project at hand. An accurate time-velocity model can be of great use in the construction of an initial depth-velocity model, from which a high-quality depth image can be produced. Based on available explicit and analytical expressions that relate the kinematic attributes (namely, traveltimes and local slopes) of local events in the recording (demigration) and migrated domains, we revisit tomographic methodologies for velocity-model building, with a specific focus on the time domain, and on those that makes use of local slopes, as well as traveltimes, as key attributes for imaging. We also adopt the strategy of estimating local inclinations in the time-migrated domain (where we have less noise and better focus) and use demigration to estimate those inclinations in the recording domain. On the theoretical side, the main contributions of this work are twofold: 1) we base the velocity model estimation on kinematic migration/demigration techniques that are nonlinear (and therefore more accurate than simplistic linear approaches) and 2) the corresponding Fréchet derivatives take into account that the velocity model is laterally heterogeneous. In addition to providing the comprehensive mathematical algorithms involved, three proof-of-concept numerical examples are demonstrated, which confirm the potential of our methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler F., Baina R., Soudani M.A., Cardon P. and Richard J.-B., 2008. Nonlinear 3d tomographic least-squares inversion of residual moveout in kirchhoff prestack-depth-migration common-image gathers. Geophysics, 73, VE13–VE23.

    Google Scholar 

  • Aster R.C., Borchers B. and Thurber C.H., 2013. Parameter Estimation and Inverse Problems. 2nd Edition. Academic Press, Waltham, MA.

    Google Scholar 

  • Bakker P., 2002. Image Structure Analysis for Seismic Interpretation. Ph.D. Thesis. Delft Techncial University, Delft, The Netherlands.

    Google Scholar 

  • Barros T., Ferrari R., Krummenauer R. and Lopes R., 2015. Differential evolution-based optimization procedure for automatic estimation of the common-reflection surface traveltime parameters. Geophysics, 80, WD189–WD200.

    Google Scholar 

  • Bartels R.H., Beatty J.C. and Barsky B.A., 1987. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers, Burlington, MA.

    Google Scholar 

  • Bauer A., Schwarz B. and Gajewski D., 2009. Enhancement of prestack diffraction data and attributes using a traveltime decomposition approach. Stud. Geophys. Geod., 60, 471–486.

    Google Scholar 

  • Baykulov M. and Gajewski D., 2009. Prestack seismic data enhancement with partial common-reflection-surface (CRS) stack. Geophysics, 74, V49–V58.

    Google Scholar 

  • Bergler S., Hubral P., Marchetti P., Cristini A. and Cardone G., 2002. 3D common-reflection-surface stack and kinematic wavefield attributes. The Leading Edge, 21, 1010–1015.

    Google Scholar 

  • Berkovitch A., Belfer I. and Landa E., 2008. Multifocusing as a method of improving subsurface imaging. The Leading Edge, 27, 250–256.

    Google Scholar 

  • Berkovitch A., Belfer I., Hassin Y. and Landa E., 2009. Diffraction imaging by multifocusing. Geophysics, 74, WCA75–WCA81.

    Google Scholar 

  • Bigun J. and Granlund G.H., 1987. Optimal orientation detection of linear symmetry. In: Proceedings of the IEEE First International Conference on Computer Vision. Computer Society Press of the IEEE, 433–438.

  • Billette F. and Lambaré G., 1998. Velocity macro-model estimation from seismic reflection data by stereotomography Geophys. J. Int., 135, 671–690.

    Google Scholar 

  • Bloot R., Coimbra T.A., Faccipieri J.H. and Tygel M., 2018. Common-reflection-surface method in weakly anisotropic vertical transverse isotropic media. Geophysics, 83, C99–C113.

    Google Scholar 

  • Bóna A., 2011. Shot-gather time migration of planar reflectors without velocity model. Geophysics, 76, S93–S101.

    Google Scholar 

  • Bonomi E., Cristini M., Theis D. and Marchetti P., 2009. 3D CRS analysis: a data-driven optimization for the simultaneous estimate of the eight parameters. SEG Technical Program Expanded Abstracts 2009, 3284–3291, DOI: https://doi.org/10.1190/1.3255542.

  • Chauris H., Noble M.S., Lambaré G. and Podvin P., 2002a. Migration velocity analysis from locally coherent events in 2-d laterally heterogeneous media, part I: Theoretical aspects. Geophysics, 67, 1202–1212.

    Google Scholar 

  • Chauris H., Noble M.S., Lambaré G. and Podvin P., 2002b. Migration velocity analysis from locally coherent events in 2-d laterally heterogeneous media, part II: Applications on synthetic and real data. Geophysics, 67, 1213–1224.

    Google Scholar 

  • Coimbra T.A., de Figueiredo J.J.S., Schleicher J., Novais A. and Costa J.C., 2013. Migration velocity analysis using residual diffraction moveout in the poststack depth domain. Geophysics, 78, S125–S135.

    Google Scholar 

  • Coimbra T.A., Faccipieri J.H., Rueda D.S. and Tygel M., 2016a. Common-reflection-point time migration. Stud. Geophys. Geod., 60, 500–530.

    Google Scholar 

  • Coimbra T.A., Novais A. and Schleicher J., 2016b. Offset-continuation stacking: Theory and proof of concept. Geophysics, 81, V387–V401.

    Google Scholar 

  • Cooke D., Bóna A. and Hansen B., 2009. Simultaneous time imaging, velocity estimation, and multiple suppression using local event slopes. Geophysics, 74, WCA65–WCA73.

    Google Scholar 

  • Dell S. and Gajewski D., 2011. Common-reflection-surface-based workflow for diffraction imaging. Geophysics, 76, S187–S195.

    Google Scholar 

  • Dell S., Gajewski D. and Tygel M., 2014. Image-ray tomography. Geophys. Prospect., 62, 413–426.

    Google Scholar 

  • Dix C.H., 1955. Seismic velocities from surface measurements. Geophysics, 20, 68–86.

    Google Scholar 

  • Douma H. and de Hoop M.V., 2006. Leading-order seismic imaging using curvelets. SEG Technical Program Expanded Abstracts 2006, 2411–2415, DOI: https://doi.org/10.1190/1.2370019.

  • Faccipieri J.H., Serrano D.R., Gelius L.J. and Tygel M., 2013. Recovering diffractions in CRS stacked sections. First Break, 31, 27–31.

    Google Scholar 

  • Faccipieri J.H., Coimbra T.A., Gelius L.J. and Tygel M., 2016. Stacking apertures and estimation strategies for reflection and diffraction enhancement. Geophysics, 81, V271–V282.

    Google Scholar 

  • Fomel S., 2002. Applications of plane-wave destruction filters. Geophysics, 67, 1946–1960.

    Google Scholar 

  • Fomel S., 2007a. Velocity-independent time-domain seismic imaging using local event slopes. Geophysics, 72, S139–S147.

    Google Scholar 

  • Fomel S., 2007b. Local seismic attributes. Geophysics, 72, A29–A33.

    Google Scholar 

  • Fomel S. and Kazinnik R., 2012. Non-hyperbolic common reflection surface. Geophys. Prospect., 61, 21–27.

    Google Scholar 

  • Garabito G., Cruz J.C.R. and Solner W., 2017. Finite-offset common reflection surface stack using global optimisation for parameter estimation: a land data example. Geophys. Prospect., 65, 1123–1137.

    Google Scholar 

  • Gelius L.-J. and Tygel M., 2015. Migration-velocity building in time and depth from 3D (2D) Common-Reflection-Surface (CRS) stacking — theoretical framework. Stud. Geophys. Geod., 59, 253–282.

    Google Scholar 

  • Gjøystdal H. and Ursin B., 1981. Inversion of reflection times in three dimensions. Geophysics, 46, 972–983.

    Google Scholar 

  • Guillaume P., Audebert F., Berthet P., David B., Herrenschmidt A. and Zhang X., 2001. 3D finite-offset tomographic inversion of CRP-scan data, with or without anisotropy. SEG Technical Program Expanded Abstracts 2001, 718–721, DOI: https://doi.org/10.1190/1.1816731.

  • Guillaume P., Lambaré G., Leblanc O., Mitouard P., Moigne J.L., Montel J.-P., Prescott T., Siliqi R., Vidal N., Zhang X. and Zimine S., 2008. Kinematic invariants: an efficient and flexible approach for velocity model building. SEG Technical Program Expanded Abstracts 2008, 3687–3692, DOI: https://doi.org/10.1190/1.3064100.

  • Guillaume P., Reinier M., Lambaré G., Cavalié A., Adamsen M.I. and Bruun B.M., 2013. Dip constrained non-linear slope tomography: an application to shallow channels characterization. SEG Global Meeting Abstracts, 1587–159, DOI: https://doi.org/10.1190/sbgf2013-325.

  • Hertweck T., Schleicher J. and Mann J., 2007. Data stacking beyond CMP. The Leading Edge, 26, 818–827.

    Google Scholar 

  • Hoecht G., Ricarte P., Bergler S. and Landa E., 2009. Operator-oriented CRS interpolation. Geophys. Prospect., 57, 957–979.

    Google Scholar 

  • Hubral P., 1999. Special issue: Macro model independent seismic imaging. J. Appl. Geophys., 42, 137–138.

    Google Scholar 

  • Hubral P. and Krey T., 1980. Interval Velocities from Seismic Reflection Time Measurements. Society of Exploration Geophysicists, Tulsa, USA.

    Google Scholar 

  • Iversen E., 2004. The isochron ray in seismic modeling and imaging. Geophysics, 69, 1053–1070.

    Google Scholar 

  • Iversen E. and Gjøystdal H., 1996. Event-oriented velocity estimation based on prestack data in time or depth domain. Geophys. Prospect., 44, 643–686.

    Google Scholar 

  • Iversen E., Tygel M., Ursin B. and Hoop M.V., 2012. Kinematic time migration and demigration of reflections in pre-stack seismic data. Geophys. J. Int., 189, 1635–1666.

    Google Scholar 

  • Jäger R., Mann J., Höcht G. and Hubral P., 2001. Common-reflection-surface stack: Image and attributes. Geophysics, 66, 97–109.

    Google Scholar 

  • Khoshnavaz M.J., 2017. Oriented time-domain dip moveout correction for planar reflectors in common-source domain. Geophysics, 82, U87–U97.

    Google Scholar 

  • Khoshnavaz M.J., Bóna A., Dzunic A., Ung K. and Urosevic M., 2016a. Oriented prestack time migration using local slopes and predictive painting in the common-source domain for planar reflectors. Geophysics, 81, S409–S418.

    Google Scholar 

  • Khoshnavaz M.J., Bóna A. and Urosevic M., 2016b. Velocity-independent estimation of kinematic attributes in vertical transverse isotropy media using local slopes and predictive painting. Geophysics, 81, U73–U85.

    Google Scholar 

  • Kleyn A.H., 1977. On the migration of reflection time contour maps. Geophys. Prospect., 25, 125–140.

    Google Scholar 

  • Klokov A. and Fomel S., 2012. Separation and imaging of seismic diffractions using migrated dip-angle gathers. Geophysics, 77, S131–S143.

    Google Scholar 

  • Knutsson H., 1989. Representing local structure using tensors. In: Pietikainen M. and Ron̈ing J. (Eds), Proceedings of the 6th Scandinavian Conference on Image Analysis. International Association for Pattern Recognition, 244–251.

  • Lambaré G., Deladerrière N., Traonmilin Y., Touré J.P., Moigne J.L. and Herrmann P., 2009. Nonlinear tomography for time imaging. Extended Abstract. 71st EAGE Conference and Exhibition Incorporating SPE EUROPEC 2009. EAGE Publications BV, DOI: https://doi.org/10.3997/2214-4609.201400386.

  • Landa E., 2007. Beyond Conventional Seismic Imaging. EAGE, The Hague, The Netherlands.

    Google Scholar 

  • Landa E., Gurevich B., Keydar S. and Trachtman P., 1999. Application of multifocusing method for subsurface imaging. J. Appl. Geophys., 42, 283–300.

    Google Scholar 

  • Landa E., Keydar S. and Moser T.J., 2010. Multifocusing revisited — inhomogeneous media and curved interfaces. Geophys. Prospect., 58, 925–938.

    Google Scholar 

  • Messud J., Lambaré G., Guillaume P. and Rohel C., 2015. Non-linear slope tomography for orthorhombic pre-stack time imaging. Extended Abstract. 77th EAGE Conference and Exhibition 2015. EAGE Publications BV, DOI: https://doi.org/10.3997/2214-4609.201412575.

  • Minato S., Tsuji T., Matsuoka T., Nishizaka N. and Ikeda M., 2012. Global optimisation by simulated annealing for common reflection surface stacking and its application to low-fold marine data in southwest japan. Explor. Geophys., 43, 59–69.

    Google Scholar 

  • Neidell N.S. and Taner M.T., 1971. Semblance and other coherency measures for multichannel data. Geophysics, 36, 482–497.

    Google Scholar 

  • Perroud M., Hubral P. and Höcht G., 1999. Common-reflection-point stacking in laterally inhomogeneous media. Geophys. Prospect., 47, 1–24.

    Google Scholar 

  • Rad P.B., Schwarz B., Gajewski D. and Vanelle C., 2018. Common-reflection-surface-based prestack diffraction separation and imaging. Geophysics, 83, S47–S55.

    Google Scholar 

  • Randen T., Monsen E., Signer C., Abrahamsen A., Hansen J.O., Sæter T. and Schlaf J., 2000. Three-dimensional texture attributes for seismic data analysis. SEG Technical Program Expanded Abstracts 2000, 668–671, DOI: https://doi.org/10.1190/1.1816155.

  • Riabinkin 1957. Fundamentals of resolving power of controlled directional reception (CDR) of seismic waves. In: Gardner G.H.F. and Lu L. (Eds), Slant-Stack Processing, 14, 36–60, Society of Exploration Geophysicists, Tulsa, USA.

    Google Scholar 

  • Rieber F., 1936. Visual presentation of elastic wave patterns under various structural conditions. Geophysics, 1, 196–218.

    Google Scholar 

  • Shah P.M., 1973. Use of wavefront curvature to relate seismic data with subsurface parameters. Geophysics, 38, 812–825.

    Google Scholar 

  • Söllner W. and Andersen E., 2005. Kinematic time migration and demigration in a 3D visualization system. J. Seism. Explor., 14, 255–270.

    Google Scholar 

  • Söllner W., Andersen E. and Lima J., 2004. Fast time-to-depth mapping by first-order ray transformation in a 3-D visualization system. SEG Technical Program Expanded Abstracts 2004, 1081–1084, DOI: https://doi.org/10.1190/1.1851071.

  • Spinner M. and Mann J., 2006. True-amplitude based Kirchhoff time migration for AVO/AVA analysis. Geophysics, 15, 133–152.

    Google Scholar 

  • Stolk C.C., de Hoop M.V. and Symes W.W., 2009. Kinematics of shot-geophone migration. Geophysics, 74, WCA19–WCA34.

    Google Scholar 

  • Stovas A. and Fomel S., 2015. Mapping of moveout attributes using local slopes. Geophys. Prospect., 64, 31–37.

    Google Scholar 

  • Sword C.H., 1986. Tomographic determination of interval velocities from picked reflection seismic data. SEG Technical Program Expanded Abstracts 1986, 657–660, DOI: https://doi.org/10.1190/1.1892933.

  • Tygel M. and Santos L.T., 2007. Quadratic normal moveouts of symmetric reflections in elastic media: A quick tutorial. Stud. Geophys. Geod., 51, 185–206.

    Google Scholar 

  • Ursin P., 1982. Quadratic wavefront and traveltime approximations in inhomogeneous layered media with curved interfaces Geophysics, 47, 1012–1021.

    Google Scholar 

  • van de Weijer J., van Vliet L., Verbeek P. and van Ginkel R., 2001. Curvature estimation in oriented patterns using curvilinear models applied to gradient vector fields. IEEE Trans. Pattern Anal. Mach. Intell., 23, 1035–1042.

    Google Scholar 

  • Vanelle C., Abakumov I. and Gajewski D., 2018. Wavefront attributes in anisotropic media. Geophys. J. Int., 214, 430–443.

    Google Scholar 

  • Walda J. and Gajewski D., 2017. Determination of wavefront attributes by differential evolution in the presence of conflicting dips. Geophysics, 82, V229–V239.

    Google Scholar 

  • Waldeland A.U., Coimbra T.A., Faccipieri J.H., Solberg A.H.S. and Gelius L.J., 2019. Fast estimation of prestack common reflection surface parameters. Geophys. Prospect., 67, 1163–1183.

    Google Scholar 

  • Whitcombe D.N., Murray E.H., Aubin L.A.S. and Carroll R.J., 1994. The application of 3-D depth migration to the development of an alaskan offshore oil field. Geophysics, 59, 1551–1560.

    Google Scholar 

  • Yuan S., Wang S., Luo C. and Wang T., 2018. Inversion-based 3-D seismic denoising for exploring spatial edges and spatio-temporal signal redundancy. IEEE Geosci. Remote Sens. Lett., 15, 1682–1686.

    Google Scholar 

  • Yuan S., Su Y., Wang T., Wang J. and Wang S., 2019. Geosteering phase attributes: A new detector for the discontinuities of seismic images. IEEE Geosci. Remote Sens. Lett., 16, 145–149.

    Google Scholar 

  • Zhang Y., Bergler S., Tygel M. and Hubral P., 2002. Model-independent travel-time attributes for 2-D, finite-offset multicoverage reflections. Pure Appl. Geophys., 159, 1601–1616.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Norwegian Research Council through the Petro-Maks 2 project (NFR/234019). We thank Lundin Norway AS for making the 3D field dataset available for this study. We also grateful to NORSAR for providing the software for the synthetic data generation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Waldeland, A.U., Serrano, D.R. et al. Time-migration velocity estimation using Fréchet derivatives based on nonlinear kinematic migration/demigration solvers. Stud Geophys Geod 64, 26–75 (2020). https://doi.org/10.1007/s11200-019-1172-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-019-1172-0

Keywords

Navigation