Skip to main content
Log in

Regional improvement of global geopotential models using GPS/Leveling data

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Global geopotential models are widely used in the remove-compute-restore technique for local gravity field modeling. In this paper, a method for regional improvement of global geopotential models using GPS/Leveling data is presented. The part of the spherical harmonic expansion degrees that can be subject to the regional improvement is determined depending on the spatial resolution of the GPS/Leveling data and the size of the study region. In this method, a global geopotential model is required as the original model. Using the GPS/Leveling data corrected for the systematic errors, the geoid surface is obtained at the GPS/Leveling points. By expanding the gravity potential of the geoid surface into the spherical harmonics, a mathematical model is made to estimate the spherical harmonic coefficients of the regionally improved geopotential model. To stabilize the mathematical model, pseudo data of the gravitational potential type produced by the original model on the entire Earth’s surface are added to the GPS/Leveling data. The relative weight of the two types of the data, i.e., the GPS/Leveling data and the pseudo data, is selected based on fitting the original model to the GPS/Leveling data. As numerical tests, the regionally improved geopotential model of the USA from degree 8 to 779 and the regionally improved geopotential model of Iran from degree 12 to 339 are developed. To develop both regionally improved geopotential models, the EGM2008 model up to degree 2160 is selected as the original model. The assessments at the GPS/Leveling checkpoints show that the regionally improved geopotential model of the USA has a 23% improvement and the regionally improved geopotential model of Iran has an 8% improvement with respect to the original model. The numerical tests confirm the efficiency of the proposed method for the regional improvement of global geopotential models using the GPS/Leveling data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertella A., Migliaccio F. and Sansò F., 1991. The aliasing effect in coefficients estimation. In: Rapp R. and Sansò F. (Eds), Determination of the Geoid: Present and Future. International Association of Geodesy Symposia, 106. Springer-Verlag, Berlin, Germany, 10–15.

    Book  Google Scholar 

  • Burša M., Kouba J., Raděj K., True S.A., Vatrt V. and Vojtíšková M., 1998. Mean Earth’s equipotential surface from Topex/Poseidon altimetry. Stud. Geophys. Geod., 42, 459–466.

    Article  Google Scholar 

  • Erol B., 2012. Spectral evaluation of Earth geopotential models and an experiment on its regional improvement for geoid modelling. J. Earth Syst. Sci., 121, 823–835.

    Article  Google Scholar 

  • Featherstone W.E., 2002. Expected contributions of dedicated satellite gravity field missions to regional geoid determination with some examples from Australia. J. Geospat. Eng., 4, 1–18.

    Google Scholar 

  • Forsberg R., 1985. Gravity field terrain effect computations by FFT. Bull. Geod., 59, 342–360.

    Article  Google Scholar 

  • Forsberg R. and Sideris M., 1993. Geoid computations by the multi-band spherical FFT approach. Manuscr. Geod., 18, 82–90.

    Google Scholar 

  • Förste C., Bruinsma S.L., Abrikosov O., Lemoine J.M., Marty J.C., Flechtner F., Balmino G., Barthelmes F. and Biancale R., 2014. EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services (http://doi.org/10.5880/icgem.2015.1).

    Google Scholar 

  • Garcia R.V., 2002. Local Geoid Determination from GRACE Mission. Report 460. Department of Civil and Environmental Engineering and Geodetic Sciences, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Goossens S., 2010. Applying spectral leakage corrections to gravity field determination from satellite tracking data. Geophys. J. Int., 181, 1459–1472.

    Google Scholar 

  • Groten E., 2004. Fundamental parameters and current (2004) best estimates of the parameters of common relevance to astronomy, geodesy, and geodynamics. J. Geodesy, 77, 724–731.

    Article  Google Scholar 

  • Haagmans R., Min E., Gelderen M., Eynatten M., 1993. Fast evaluation of convolution integrals on the sphere using 1D FFT and a comparison with existing methods for Stokes’ integral. Manuscr. Geod., 18, 227–241.

    Google Scholar 

  • Han S.C., Jekeli C. and Shum C. K., 2002. Aliasing and polar gap effects on geopotential coefficient estimation: space-wise simulation study of GOCE and GRACE. In: Ádám J. and Schwarz K.P. (Eds), Vistas for Geodesy in the New Millennium. International Association of Geodesy Symposia, 125. Springer-Verlag, Berlin, Germany, 181–186.

    Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.F. Freeman, San Francisco, CA.

    Google Scholar 

  • Hsu H. and Lu Y., 1995. The regional geopotential model in China. Boll. Geod. Sci. Affini, 54, 161–175.

    Google Scholar 

  • Jekeli C., 1996. Spherical harmonic analysis, aliasing, and filtering. J. Geodesy, 70, 214–223.

    Article  Google Scholar 

  • Kearsley A. and Forsberg, R., 1990. Tailored geopotential models- Applications and shortcomings. Manuscr. Geod., 15, 151–158.

    Google Scholar 

  • Koch K. R. and Kusche J., 2002. Regularization of geo-potential determination from satellite data by variance components. J. Geodesy, 76, 259–268.

    Google Scholar 

  • Kotsakis C. and Sideris M.G., 1999. On the adjustment of combined GPS/levelling/geoid networks. J. Geodesy, 73, 412–421.

    Article  Google Scholar 

  • Li X., 2018. Modeling the North American vertical datum of 1988 errors in the conterminous United States. J. Geod. Sci., 8, DOI: 10.1515/jogs-2018-0001.

    Google Scholar 

  • Lu Y., Hsu H.T. and Jiang F.Z., 2000. The regional geopotential model to degree and order 720 in China. In: Schwarz K.P. (Ed.), Geodesy Beyond 2000. International Association of Geodesy Symposia, 121. Springer-Verlag, Berlin, Germany, 143–148.

    Book  Google Scholar 

  • Martinec Z., 1996. Stability investigations of a discrete downward continuation problem for geoid determination in the Canadian Rocky Mountains. J. Geodesy, 70, 805–828.

    Article  Google Scholar 

  • Mikhail E.M. and Ackermann F.E., 1982. Observations and Least Squares. University Press of America, Lanham, MD.

    Google Scholar 

  • Pavlis N.K., 1988. Modeling and Estimation of a Low Degree Geopotential Model from Terrestrial Gravity Data. Report 386. Department of Civil and Environmental Engineering and Geodetic Sciences, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon, S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res.-Solid Earth, 117, B04406, DOI: 10.1029/2011JB008916.

    Google Scholar 

  • Petit G. and Luzum B., 2010.

  • Petit G. and Luzum B. 2010. IERS Conventions. IERS Technical Note No. 36. Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main, Germany.

    Google Scholar 

  • Saadat A., Safari A. and Needell D., 2018. IRG2016: RBF-based regional geoid model of Iran. Stud. Geophys. Geod., 62, 380–407. DOI: 10.1007/s11200-016-0679-x.

    Article  Google Scholar 

  • Sánchez L., Čunderlík R., Dayoub N., Mikula K., Minarechová Z., Šíma Z., Vatrt V. and Vojtíšková M., 2016. A conventional value for the geoid reference potential W0. J. Geodesy, 90, 815–835.

    Article  Google Scholar 

  • Sansò F., 1990. On the aliasing problem in the spherical harmonic analysis. J. Geodesy, 64, 313–330.

    Article  Google Scholar 

  • Schwarz K.P., Sideris M.G., Forsberg R., 1990. Use of FFT methods in physical geodesy. Geophys. J. Int., 100, 485–514.

    Article  Google Scholar 

  • Sideris M.G., 1994a. Geoid determination by FFT techniques. In: Sansò F. (Ed.), International Geoid School for the Determination and Use of the Geoid. Lecture Notes. International Geoid Service, DIIAR-Politechnico di Milano, Milano, Italy

    Google Scholar 

  • Sideris M.G., 1994b. Regional geoid determination. In: Vaníček P. and Christou N.T. (Eds), The Geoid and Its Geophysical Interpretation. CRC Press, Boca Raton, FL, 77–94.

    Google Scholar 

  • Sjöberg L.E., 2005. A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modeling. J. Geodesy, 78, 645–653.

    Article  Google Scholar 

  • Sjöberg L.E., 2007. The topographic bias by analytical continuation in physical geodesy. J. Geodesy, 81, 345–350.

    Article  Google Scholar 

  • Sjöberg L.E., 2009. On the topographic bias in geoid determination by the external gravity field. J. Geodesy, 83, 967–972.

    Article  Google Scholar 

  • Sjöberg L.E. and Bagherbandi M., 2011. A numerical study of the analytical downward continuation error in geoid computation by EGM08. J. Geod. Sci., 1, 2–8.

    Google Scholar 

  • Soycan M., 2014. Improving EGM2008 by GPS and leveling data at local scale. Boletim de Ciências Geodésicas, 20, 3–18.

    Article  Google Scholar 

  • Spetzler J. and Trampert J., 2003. Implementing spectral leakage corrections in global surface wave tomography. Geophys. J. Int., 155, 532–538.

    Article  Google Scholar 

  • van Hees G.S., 1990. Stokes formula using fast Fourier technique. Manuscr. Geod., 15, 235–239.

    Google Scholar 

  • Teunissen P.J.G. and Amiri-Simkooei A.R., 2008. Least-squares variance component estimation. J. Geodesy, 82, 65–82.

    Article  Google Scholar 

  • Trampert J. and Snieder R., 1996. Model estimations biased by truncated expansions: possible artifacts in seismic tomography. Science, 271, 1257–1260.

    Article  Google Scholar 

  • Tziavos I.N., 1996. Comparisons of spectral techniques for geoid computations over large regions. J. Geodesy, 70, 357–37.

    Google Scholar 

  • Vaníček P., Sun W., Ong P., Martinec Z., Najafi M., Vajda P. and Ter Horst B., 1996. Downward continuation of Helmert’s gravity. J. Geodesy, 71, 21–34.

    Article  Google Scholar 

  • Weber G. and Zomorrodian H., 1988. Regional geopotential model improvement for the Iranian geoid determination. J. Geodesy, 62, 125–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahdi Mosayebzadeh, Alireza A. Ardalan or Roohollah Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosayebzadeh, M., Ardalan, A.A. & Karimi, R. Regional improvement of global geopotential models using GPS/Leveling data. Stud Geophys Geod 63, 169–190 (2019). https://doi.org/10.1007/s11200-017-1084-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-017-1084-9

Keywords

Navigation