Skip to main content
Log in

Bayesian inference for the Errors-In-Variables model

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We discuss the Bayesian inference based on the Errors-In-Variables (EIV) model. The proposed estimators are developed not only for the unknown parameters but also for the variance factor with or without prior information. The proposed Total Least-Squares (TLS) estimators of the unknown parameter are deemed as the quasi Least-Squares (LS) and quasi maximum a posterior (MAP) solution. In addition, the variance factor of the EIV model is proven to be always smaller than the variance factor of the traditional linear model. A numerical example demonstrates the performance of the proposed solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akyilmaz O., 2007. Total least squares solution of coordinate transformation. Surv. Rev., 39, 68–80.

    Article  Google Scholar 

  • Amiri-Simkooei A., 2013. Application of least squares variance component estimation to errors-invariables models. J. Geodesy, 87, 935–944.

    Article  Google Scholar 

  • Amiri-Simkooei A. and Jazaeri S., 2012. Weighted total least squares formulated by standard least squares theory. J. Geod. Sci., 2, 113–124.

    Google Scholar 

  • Amiri-Simkooei A. and Jazaeri S., 2013. Data-snooping procedure applied to errors-in-variables models. Stud. Geophys. Geod., 57, 426–441.

    Article  Google Scholar 

  • Bauwens L., Lubrano M. and Richard J.-F., 1999. Bayesian Inference in Dynamic Econometric Models. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Bolfarine H. and Rodrigues J., 2007. Bayesian inference for an extended simple regression measurement error model using skewed priors. Bayesian Anal., 2, 349–364.

    Article  Google Scholar 

  • Dellaportas P. and Stephens D.A., 1995. Bayesian analysis of errors-in-variables regression models. Biometrics, 51, 1085–1095.

    Article  Google Scholar 

  • Fang X., 2011. Weighted Total Least Squares Solutions for Applications in Geodesy. PhD Thesis. Leibniz University, Hannover, Germany.

    Google Scholar 

  • Fang X., 2013. Weighted Total Least Squares: necessary and sufficient conditions, fixed and random parameters. J. Geodesy, 87, 733–749.

    Article  Google Scholar 

  • Fang X., 2014a. A structured and constrained Total Least-Squares solution with cross-covariances. Stud. Geophys. Geod., 58, 1–16.

    Article  Google Scholar 

  • Fang X., 2014b. On non-combinatorial weighted Total Least Squares with inequality constraints. J. Geodesy, 88, 805–816.

    Article  Google Scholar 

  • Fang X., 2014c. A total least squares solution for geodetic datum transformations. Acta Geod. Geophys., 49, 189–207.

    Article  Google Scholar 

  • Fang X., 2015. Weighted total least-squares with constraints: a universal formula for geodetic symmetrical transformations. J. Geodesy, 89, 459–469.

    Article  Google Scholar 

  • Felus F., 2004. Application of Total Least Squares for Spatial Point Process Analysis. J. Surv. Eng., 130, 126–133.

    Article  Google Scholar 

  • Felus F. and Burtch R., 2009. On symmetrical three-dimensional datum conversion. GPS Solut., 13, 65–74.

    Article  Google Scholar 

  • Florens J.-P., Mouchart M. and Richard J.-F., 1974. Bayesian inference in error-in-variables models. J. Multivar. Anal., 4, 419–452.

    Article  Google Scholar 

  • Golub G. and Van Loan C., 1980. An analysis of the Total least-squares problem. SIAM J. Numer. Anal., 17, 883–893.

    Article  Google Scholar 

  • Grafarend E. and Awange J.L., 2012. Applications of Linear and Nonlinear Models. Fixed Effects, Random Effects, and Total Least Squares. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Grafarend E.W. and Schaffrin B., 1993. Ausgleichungsrechnung in linearen Modellen. BIWissenschaftsverlag, Mannheim, Germany (in German).

    Google Scholar 

  • Huang H.-J., 2010. Bayesian Analysis of Errors-in-Variables Growth Curve Models. PhD Thesis. University of California, Riverside, CA.

    Google Scholar 

  • Koch K., 1986. Maximum likelihood estimate of variance components. Bull. Geod., 60, 329–338.

    Article  Google Scholar 

  • Koch K., 1999. Parameter Estimation and Hypothesis Testing in Linear Models. 2nd Edition. Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  • Koch K., 2007. Introduction to Bayesian Statistics. 2nd Edition. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Markovsky I. and Van Huffel S., 2007. Overview of total least-squares methods. Signal Process., 87, 2283–2302.

    Article  Google Scholar 

  • Kwon J.H., Lee J.K., Schaffrin B., Yun S.C. and Lee I., 2009. New affine transformation parameters for the horizontal network of Seoul/Korea by multivariat TLS-adjustment. Surv. Rev., 41, 279–291

    Article  Google Scholar 

  • Li B., Shen Y., Zhang X., Li C. and Lou L., 2013. Seamless multivariate affine error-in-variables transformation and its application to map rectification. Int. J. Geogr. Inf. Sci., 27, 1572–1592.

    Article  Google Scholar 

  • Lindley D.V. and El Sayyad G.M., 1968. The Bayesian estimation of a linear functional relationship. J. R. Stat. Soc. Ser. B-Stat. Methodol., 30, 190–202.

    Google Scholar 

  • Neitzel F., 2010. Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J. Geodesy, 84, 751–762.

    Article  Google Scholar 

  • Neri F., Saitta G. and Chiofalo S., 1989. An accurate and straightforward approach to line regression analysis of error-affected experimental data. J. Phys. E-Sci. Instr., 22, 215–217.

    Article  Google Scholar 

  • Pope A., 1972. Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. In: Proceedings of the 38th Annual Meeting, American Society of Photogrammetry, Washington, D.C., Mar. 12-17, 1972. American Society of Photogrammetry, Bethesda, MD, 449–477.

    Google Scholar 

  • Polasek W., 1995. Bayesian generalized errors in variables (GEIV) models for censored regrssions. In: Mammitzsch V. and Schneeweiss H. (Eds), Symposia Gaussiana. Conference B: Statistical Sciences. De Gruyter, Berlin, Germany, 261–279.

    Google Scholar 

  • Reilly P.M. and Patino-Lea H., 1981. A Bayesian study of the error-in-variables model. Technometrics, 23, 221–231.

    Article  Google Scholar 

  • Schaffrin B., 1997. Reliability measures for correlated observations. J. Surv. Eng.-ASCE, 123, 126–137.

    Article  Google Scholar 

  • Schaffrin B., 2006. A note on Constrained Total Least-Squares estimation. Linear Alg. Appl., 417, 245–258.

    Article  Google Scholar 

  • Schaffrin B. and Felus Y., 2008. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms. J. Geodesy, 82, 373–383.

    Article  Google Scholar 

  • Schaffrin B. and Wieser A., 2008. On weighted total least-squares adjustment for linear regression. J. Geodesy, 82, 415–421.

    Article  Google Scholar 

  • Shan J., 1989. A fast recursive method for repeated computation of the reliability matrix QvvP. Photogrammetria, 43, 337–346.

    Article  Google Scholar 

  • Shen Y., Li B.F. and Chen Y., 2010. An iterative solution of weighted total least-squares adjustment. J. Geodesy, 85, 229–238.

    Article  Google Scholar 

  • Snow K., 2012. Topics in Total Least-Squares Adjustment within the Errors-In-Variables Model: Singular Cofactor Matrices and Priori Information. PhD Thesis. Report 502. Geodetic Science Program, School of Earth Sciences, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Stigler S.M., 1986. The History of Statistics: The Measurement of Uncertainty before 1900. Belknap Press of Harvard University Press, Cambridge, MA, ISBN 0-674-40340-1.

    Google Scholar 

  • Teunissen P.J.G., 1988. The nonlinear 2D symmetric Helmert transformation: an exact nonlinear least squares solution, Bull. Geod., 62, 1–15.

    Article  Google Scholar 

  • Xu P., Liu Y., Shen Y. and Fukuda Y., 2007. Estimability analysis of variance and covariance components. J. Geodesy, 81, 593–602.

    Article  Google Scholar 

  • Xu P., Liu J. and Shi C., 2012. Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis. J. Geodesy, 86, 661–675.

    Article  Google Scholar 

  • Xu P., 2016. The effect of errors-in-variables on variance component estimation. J. Geodesy, DOI: 10.1007/s00190-016-0902-0

    Google Scholar 

  • Zellner A., 1971. An Introduction to Bayesian Inference in Econometrics. John Wiley & Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxian Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Li, B., Alkhatib, H. et al. Bayesian inference for the Errors-In-Variables model. Stud Geophys Geod 61, 35–52 (2017). https://doi.org/10.1007/s11200-015-6107-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-6107-9

Keywords

Navigation