Skip to main content
Log in

Gravimetric geoid for Egypt implementing Moho depths and optimal geoid fitting approach

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate the effect of implementing the experimentally determined GEMMA Moho depths (GOCE Exploitation for Moho Modeling and Applications), which are partly seismically estimated, in gravimetric geoid computation in Egypt. The window remove-restore technique has been proposed to avoid the double consideration of the topographic-isostatic masses in the neighbourhood of the computational point. The plate loading theory has been used to model the seismically determined Moho depths. A constant density contrast between the lower crust and the upper mantle has been postulated. The tailored geopotential model EGTGM2014 has been used for the long wavelength contributions of the Earth’s gravity field. A comparison with a geoid computed using the EGM2008 and Airy floating hypothesis has been made. For all cases, a gravimetric geoid for Egypt has been computed using Stokes’ integral in the frequency domain by 1-D FFT technique. The computed geoids are fitted to the GPS-levelling derived geoid using an optimum geoid fitting technique for Egypt introduced by the author. The results show that using the seismically determined Moho depths within the plate loading theory and the EGTGM2014 tailored geopotential model gives a geoid with external accuracy of about 16 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-Elmotaal H., 1991. Gravity Anomalies Based on the Vening Meinesz Isostatic Model and Their Statistical Behaviour. Mitteilungen der geodätischen Institute der Technischen Universtät Graz, 72, Graz, Austria.

    Google Scholar 

  • Abd-Elmotaal H., 1993. Vening Meinesz Moho depths: traditional, exact and approximated. Manuscripta Geodaetica, 18(4), 171–181.

    Google Scholar 

  • Abd-Elmotaal H., 2001. Precise geoid computation using seismic Moho information. Boll. Geod. Sci. Affini, 60, 227–238.

    Google Scholar 

  • Abd-Elmotaal H., 2003. Implementing seismic Moho depths in geoid computation. Surv. Rev., 37, 235–245.

    Article  Google Scholar 

  • Abd-Elmotaal H., 2014. Egyptian geoid using ultra high-degree tailored geopotential model. Proceedings of the 25th International Federation of Surveyors FIG Congress, Kuala Lumpur, Malaysia, June 16–21, 2014 (http://www.fig.net/pub/fig2014/papers/ts02a/TS02A_abdelmotaal_6856.pdf).

    Google Scholar 

  • Abd-Elmotaal H., Abd-Elbaky M. and Ashry M., 2013. 30 meters Digital Height Model for Egypt. Presented at VIII Hotine-Marussi Symposium, Rome, Italy, June 17–22, 2013 (https://www.researchgate.net/publication/273143491_30_Meters_Digital_Height_Model_ for_Egypt).

    Google Scholar 

  • Abd-Elmotaal H. and Kühtreiber N., 1999. Improving the geoid accuracy by adapting the reference field. Phys. Chem. Earth, 24, 53–59, DOI: 10.1016/S1464-1895(98)00010-6.

    Article  Google Scholar 

  • Abd-Elmotaal H. and Kühtreiber N., 2001. Astrogeodetic geoid determination using seismic Moho information. International Geoid Service Bulletin (IGeS), 11, 80–92.

    Google Scholar 

  • Abd-Elmotaal H. and Kühtreiber N., 2002. High accurate geoid using adapted reference field and seismic Moho depths. International Geoid Service Bulletin (IGeS), 13, 2–12.

    Google Scholar 

  • Abd-Elmotaal H. and Kühtreiber N., 2003. Geoid determination using adapted reference field, seismic Moho depths and variable density contrast. J. Geodesy, 77, 77–85.

    Article  Google Scholar 

  • Abd-Elmotaal H. and Kühtreiber N., 2014a Automated gross error detection technique applied to the gravity database of Africa. Geophys. Res. Abs., 16, EGU2014-92.

    Google Scholar 

  • Abd-Elmotaal H. and Kühtreiber N., 2014b. The effect of DHM resolution in computing the topographic-isostatic harmonic coefficients within the window technique. Stud. Geophys. Geod., 58, 41–55, DOI: 10.1007/s11200-012-0231-6.

    Article  Google Scholar 

  • Abd-Elmotaal H. and Kühtreiber N., 2015. On the computation of the ultra-high harmonic coefficients of the topographic-isostatic masses within the data window. Geophys. Res. Abs., 17, EGU2015-355.

    Google Scholar 

  • Abd-Elmotaal H. and Makhloof A., 2013. Gross-errors detection in the shipborne gravity data set for Africa. Presented at Geodetic Week, Essen, Germany, October 8–10, 2013 (http://www.uni-stuttgart.de/gi/research/Geodaetische_Woche/2013/session02/Abd-Elmotaal-Makhloof.pdf).

    Google Scholar 

  • Abd-Elmotaal H. and Makhloof A., 2014. Optimum geoid fitting technique for Egypt. Geophys. Res. Abs., 16, EGU2014-1537.

    Google Scholar 

  • Brotchie J.F. and Silvester R., 1969. On crustal flexure. J. Geophys. Res., 74, 5240–5252.

    Article  Google Scholar 

  • Haagmans R., de Min E. and van Gelderen M., 1993. Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral, Manuscripta Geodaetica, 18, 227–241.

    Google Scholar 

  • Kakkuri J. and Wang Z.T., 1998. Structural effects of the crust on the geoid modelled using deep seismic sounding interpretations. Geophys. J. Int., 135, 495–504.

    Article  Google Scholar 

  • Majdański M., Kozlovskaya E., Świeczak M. and Grad M., 2008. Interpretation of geoid anomalies in the contact zone between the East European Craton and the Palaeozoic Platform-I. Estimation of effects of density inhomogeneities in the crust on geoid undulations. Geophys. J. Int., 177, 321–333.

    Article  Google Scholar 

  • Marti U., 2004. High precision combined geoid determination in Switzerland. Proc. IAG GGSM2004 Symp. Porto, Portugal (https://dav0.bgdi.admin.ch/swisstopo/about/publi/pdf /GGSM04_CHGEO_RE.pdf).

    Google Scholar 

  • Moritz H., 1990. The Figure of the Earth: Theoretical Geodesy and the Earth’s Interior. Wichmann, Karlsruhe, Germany.

    Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, DOI: 10.1029/2011JB008916.

    Article  Google Scholar 

  • Reguzzoni M. and Sampietro D., 2015. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf., 35, 31–43.

    Article  Google Scholar 

  • Sideris M.G. and Li Y.C., 1993. Gravity field convolutions without windowing and edge-effects. Bull. Geod., 67, 107–118.

    Article  Google Scholar 

  • Turcotte D.L. and Schubert G., 1982. Geodynamics: Applications of Continuum Physics to Geological Problems. John Wiley & Sons, New York.

    Google Scholar 

  • Vening Meinesz F.A., 1940. Fundamental Tables for Regional Isostatic Reduction of Gravity Values. Koninklijke Nooerlandsche Akademie van Wetenschappen Amsterdam, Amsterdam, The Netherlands (http://www.dwc.knaw.nl/DL/publications/PU00011463.pdf).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein A. Abd-Elmotaal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elmotaal, H.A. Gravimetric geoid for Egypt implementing Moho depths and optimal geoid fitting approach. Stud Geophys Geod 61, 657–674 (2017). https://doi.org/10.1007/s11200-015-1258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-1258-2

Keywords

Navigation