Skip to main content
Log in

Possible influence of the 11-year solar cycle on length-of-day change

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Earth variable rotation with its complex state of motion and excitation mechanism that indicates complex overall geodynamical process of the Earth’s system, reflects interactions among the solid Earth, atmosphere and oceans, etc. Solar activity has been found to be strongly correlated with some geophysical processes in the Earth system. In order to investigate the affects of solar activity on Earth rotation using the wavelet transform technique, the yearly Earth’s length-of-day (LOD) time series spanning hundreds of years is used to investigate the presence of the 11-year periodic component. The results show obvious fluctuation in the LOD variations. We suggest that the solar activity plays an important role in the oscillation of the Earth rotation, and that there is a possible relationship between solar activity and Earth rotation on decadal time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarca del Rio R., Gambis D., Salstein D., Nelson P. and Dai A., 2003. Solar activity and earth rotation variability. J. Geodyn., 36, 423–443.

    Article  Google Scholar 

  • Allen M.R. and Smith L.A., 1996. Monte Carlo SSA: Detecting irregular oscillations in the presence of coloured noise. J. Clim., 9, 3373–3404.

    Article  Google Scholar 

  • Challinor R.A., 1971. Variations in the rate of rotation of the Earth. Science, 172, 1022–1024.

    Article  Google Scholar 

  • Chao B.F., 2004. Earth rotational variations excited by geophysical fluids. In: Vandenberg N.R. and Baver K.D. (Eds), International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. NASA/CP-2004-212255, 38–46 (http://ivscc.gsfc.nasa.gov/publications/gm2004/chao/).

    Google Scholar 

  • Chapanov Y., Vondrak J. and Ron C., 2010. Common 22-year cycles of Earth rotation and solar activity. In: Kosovichev A.G., Andrei A.H. and Rozelot J.P. (Eds), Solar and Stellar Variability: Impact on Earth and Planets, IAU S264. Cambridge University Press, Cambridge, U.K., 407–409, DOI: 10.1017/S1743921309993000.

    Google Scholar 

  • Currie R.G., 1980. Detection of the 11-yr sunspot cycle signal in Earth rotation. Geophys. J. R. Astr. Soc., 61, 131–140.

    Article  Google Scholar 

  • Daubechies I., 1992. Ten Lectures on Wavelets. SIAM, Philadelphia, PA.

    Book  Google Scholar 

  • Dickey J.O., 1995. Global Earth Physics: A. Handbook of Physical Constants. AGU, Washington, D.C.

    Google Scholar 

  • Djurovic D., 1981. Solar activity and Earth’s rotation. Astron. Astrophys., 100, 156–158.

    Google Scholar 

  • Djurovic, D., 1983. Short-period geomagnetic, atmospheric, and earth-rotation variations. Astron. Astrophys., 118, 26–28.

    Google Scholar 

  • Eddy J.A., 1976. The Maunder minimum. Science, 192, 1189–1202.

    Article  Google Scholar 

  • Eubanks T.M., 1993. Variations in the orientation of the Earth. In: Smith D.E. and Turcotte D.L. (Eds), Contributions of Space Geodesy to Geodynamics: Earth Dynamics. Geodynamics Ser., 24, AGU, Washington, D.C., 1–54.

    Chapter  Google Scholar 

  • Friis-Christensen E. and Lassen K., 1991. Length of the solar cycle: An indicator of solar activity closely associated with climate. Science, 254, 698–700.

    Article  Google Scholar 

  • Foufoula-Georgiou E. and Kumar P., 1994. Wavelets in Geophysics. Academic Press, San Diego, CA.

    Google Scholar 

  • Grinsted A., Moore J.C. and Jevrejeva S., 2004. Application of the cross wavelet transform and wavelet. Nonlinear Process. Geophys., 11, 561–566.

    Article  Google Scholar 

  • Gross R.S., 2001. A combined length-of-day series spanning 1832–1997: LUNAR97. Phys. Earth Planet. Inter., 123, 65–76.

    Article  Google Scholar 

  • Gross R.S., Fukumori I., Menemenlis D. and Gegout P., 2004. Atmospheric and oceanic excitation of length-of- day variations during 1980–2000. J. Geophys. Res., 109, B01406.

    Google Scholar 

  • Gross R.S., Eubanks T.M., Steppe J.A., Freedman A.P., Dickey J.O. and Runge T.F., 1998. A Kalman filter-based approach to combining independent Earth orientation series. J. Geodesy, 72, 215–235.

    Article  Google Scholar 

  • Jackson A., Bloxham J. and Gubbins D., 1993. Time-dependent flow at the core surface and conservation. In: LeMouel J.L., Smylie D.E. and Herring T. (Eds), Dynamics of Earth’s Deep Interior and Earth Rotation. Geophysical Monograph Series, 72, 97–107.

    Chapter  Google Scholar 

  • Jackson A., 1997. Time dependency of geostrophic core-surface motions. Phys. Earth Planet. Inter., 103, 293–311.

    Article  Google Scholar 

  • Jault D., Gire C. and LeMouel J.L., 1988. Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature, 333, 353–356.

    Article  Google Scholar 

  • Kumar P. and Foufoula-Georgiou E., 1997. Wavelet analysis for geophysical applications. Rev. Geophys., 35, 385–412.

    Article  Google Scholar 

  • Lambeck K., 1980. The Earth’s Variable Rotation. Cambridge University Press, New York.

    Book  Google Scholar 

  • Le Mouel J.-L., Blanter E., Shnirman M. and Courtillot V., 2010. Solar forcing of the semi-annual variation of length-of-day. Geophys. Res. Lett., 37, 2010GL043185.

    Article  Google Scholar 

  • Ma L.H., 2009. Gleissberg cycle of solar activity over the last 7000 years. New Astronomy, 14, 1–3.

    Article  Google Scholar 

  • Ma L.H., Han Y.B. and Liao D.C., 2008. 50-day oscillation of length-of-day change. Earth Moon Planets, 103, 1–8.

    Article  Google Scholar 

  • Ma L.H., Han Y.B. and Yin Z.Q., 2009a. Influence of the 11-year solar cycle on variations of cosmic ray intensity. Sol. Phys., 255, 187–191.

    Article  Google Scholar 

  • Ma L.H., Han Y.B. and Yin Z.Q., 2009b. Periodicities in global mean TEC from GNSS observations. 2008. Earth Moon Planets, 105, 3–10.

    Article  Google Scholar 

  • Ma L.H., Han Y.B. and Yin Z.Q., 2010. Possible influence of the 11-year solar cycle on precipitation in Huashan mountain of China over the last 300 years. Earth Moon Planets, 107, 219–224.

    Article  Google Scholar 

  • Munk W.H. and MacDonald G.J.F. 1960. The Earth Rotation. Cambridge University Press, New York.

    Google Scholar 

  • Reid G.C., 1987. Influence of solar variability on global sea surface temperatures. Nature, 329, 142–143.

    Article  Google Scholar 

  • Torrence C. and Compo G.P., 1998. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 61–78.

    Article  Google Scholar 

  • Vondrák J., 1977. The rotation of the Earth between 1955.5 and 1976.5. Stud. Geophys. Geod., 21, 107–117.

    Article  Google Scholar 

  • Wahr J.M., 1988. The Earth’s rotation. Ann. Rev. Earth Planet. Sci., 16, 231–249.

    Article  Google Scholar 

  • Wilson C.R., 1995. Earth rotation and global change. Rev Geophys., 33(Suppl), 225–229.

    Article  Google Scholar 

  • Zar J.H., 1999. Biostatistical Analysis. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L. Possible influence of the 11-year solar cycle on length-of-day change. Stud Geophys Geod 59, 477–488 (2015). https://doi.org/10.1007/s11200-014-1040-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-1040-x

Keywords

Navigation