Skip to main content

Advertisement

Log in

Inversion of surface gravity data for 3-D density modeling of geologic structures using total variation regularization

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We develop an inversion procedure using the total variation (TV) regularization method as a stabilizing function to invert surface gravity data to retrieve 3-D density models of geologic structures with sharp boundaries. The developed inversion procedure combines several effective algorithms to solve the TV regularized problem. First, a matrix form of the gradient vector is designed using the Kronecker product to numerically approximate the 3-D TV function. The piecewise polynomial truncated singular value decomposition (PP-TSVD) algorithm is then used to solve the TV regularized inverse problem. To obtain a density model with depth resolution, we use a sensitivity-based depth weighting function. Finally, we apply the Genetic Algorithm (GA) to select the best combination of the PP-TSVD algorithm and the depth weighting function parameters. 3-D simulations conducted with synthetic data show that this approach produces sub-surface images in which the structures are well separated in terms of sharp boundaries, without the need of a priori detailed density model. The method applied to a real dataset from a micro-gravimetry survey of Gotvand Dam, southwestern Iran, clearly delineates subsurface cavities starting from a depth of 40 m within the area of the dam reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aster R.C., Borchers B. and Thurber C.H., 2005. Parameter Estimation and Inverse Problems. Elsevier Academic Press, London, U.K.

    Google Scholar 

  • Barnes G. and Barraud J., 2012. Imaging geological surfaces by inverting gravity gradient data with depth horizons. Geophysics, 77, G1–G11, DOI: 10.1190/geo2011-0149.1.

    Article  Google Scholar 

  • Barrodale I. and Roberts F.D.K., 1978. An efficient algorithm for discrete l1 linear approximation with linear constraints. SIAM J. Numer. Anal., 15, 603–611, DOI: 10.1137/0715040.

    Article  Google Scholar 

  • Bertete-Aguirre H., Cherkaev E. and Oristaglio M., 2002. Non-smooth gravity problem with total variation penalization functional. Geophys. J. Int., 149, 499–507, DOI: 10.1046/j.1365-246X.2002.01664.x.

    Article  Google Scholar 

  • Du Y., Aydin A. and Segall P., 1992. Comparison of various inversion techniques as applied to the determination of a geophysical deformation model for the 1983 Borah Peak earthquake. Bull. Seismol. Soc. Amer., 82, 1840–1866.

    Google Scholar 

  • Farquharson C.G. and Oldenburg D.W., 1998. Nonlinear inversion using general measures of data misfit and model structure. Geophys. J. Int., 134, 213–227, DOI: 10.1046/j.1365-246x.1998.00555.x.

    Article  Google Scholar 

  • Farquharson C.G., 2008. Constructing piecewise-constant models in multidimensional minimumstructure inversions. Geophysics, 73, K1–K9, DOI: 10.1190/1.2816650.

    Article  Google Scholar 

  • Fedi M., Hansen P.C. and Paoletti V., 2005. Tutorial: Analysis of depth resolution in potential field inversion. Geophysics, 70, A1–A11.

    Article  Google Scholar 

  • Hansen P.C., 1987. The truncated svd as a method for regularization. Bit, 27, 534–553, DOI: 10.1007/BF01937276.

    Article  Google Scholar 

  • Hansen P.C., 1998. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia, PA.

    Book  Google Scholar 

  • Hansen P.C, Jacobsen M., Rasmussen J.M. and Sørensen H., 2000. The PP-TSVD algorithm for image reconstruction problems. In: Hansen P.C., Jacobsen B.H. and Mosegaard K. (Eds), Methods and Applications of Inversion. Lecture Notes in Earth Science Series, 92. Springer-Verlag, Berlin, Germany, 171–186.

    Chapter  Google Scholar 

  • Hansen P.C. and Mosegaard K., 1996. Piecewise polynomial solutions to linear inverse problems. In: Jacobsen B.H., Mosegaard K. and Sibani P. (Eds), Inverse Methods. Lecture Notes in Earth Sciences, 63, Spinger-Verlag, Berlin, Germany, 284–294, DOI: 10.1007/BFb0011787.

    Google Scholar 

  • Hastie T., Tibshirani R. and Friedman J.H., 2009. The Elements of Statistical Learning. 2nd Edition. Springer-Verlag, New York.

    Book  Google Scholar 

  • Isakov V., 1990. Inverse Source Problems. Mathematical Surveys and Monographs, 34. American Mathematical Society, Providence, RI.

    Book  Google Scholar 

  • Kress R., 1989. Linear Integral Equations. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Lavrentiev M.M., Romanov V.G. and Shishatsky S.P., 1980. Ill-Posed Problems in Mathematical Physics and Analysis. Nauka, Moscow, Russia.

    Google Scholar 

  • Li Y. and Oldenburg D.W., 1996. 3-D inversion of magnetic data. Geophysics, 61, 394–408, DOI: 10.1190/1.1443968.

    Article  Google Scholar 

  • Li Y. and Oldenburg D.W., 1998. 3-D inversion of gravity data. Geophysics, 63, 109–119, DOI: 10.1190/1.1444302.

    Article  Google Scholar 

  • Li Y. and Oldenburg D.W., 2000. Joint inversion of surface and three-component borehole magnetic data. Geophysics, 65, 540–522, DOI: 10.1190/1.1444749.

    Article  Google Scholar 

  • Martins C.M., Lima W.A., Barbosa V.C.F. and Silva J.B.C, 2011. Total variation regularization for depth-to-basement estimate: Part 1 - Mathematical details and applications. Geophysics, 76, I1–I12, DOI: 10.1190/1.3524286.

    Article  Google Scholar 

  • Mohammadzadeh M., 2012. Solving Inversion of Gravity Anomaly Using Ant Colony Optimization Algorithm. University of Tehran, Tehran, Iran.

    Google Scholar 

  • Motagh M., Klotz J., Tavakoli F., Djamour Y., Arabi S., Wetzel H. and Zschau J., 2006. Combination of precise leveling and InSAR data to constrain source parameters of the Mw=6.5, 26 December 2003 Bam earthquake. Pure Appl. Geophys., 163, 1–18, DOI: 10.1007/s00024-005-0005-y.

    Article  Google Scholar 

  • Motagh M., Schurr B., Anderssohn J., Cailleau B., Walter T.R., Wang R. and Villotte J.P., 2010. Subduction earthquake deformation associated with 14 November 2007, Mw 7.8 Tocopilla earthquake in Chile: Results from InSAR and aftershocks. Tectonophysics, 490, 66–68, DOI: 10.1016/j.tecto.2010.04.033.

    Article  Google Scholar 

  • Nagy D., Papp G. and Benedek J., 2000. The gravitational potential and its derivatives for the prism. J. Geodesy, 74, 552–560, DOI: 10.1007/s001900000116.

    Article  Google Scholar 

  • Paoletti V., Hansen P.C., Hansen M.F. and Fedi M., 2014. A computationally efficient tool for assessing the depth resolution in potential-field inversion. Geophysics, 79, A33–A38, DOI: 10.1190/GEO2014-0017.1.

    Article  Google Scholar 

  • Paoletti V., Ialongo S., Florio G., Fedi M. and Cella F., 2013. Self-constrained inversion of potential fields. Geophys. J. Int., 195, 854–869, DOI: 10.1093/gji/ggt313.

    Article  Google Scholar 

  • Rudin L.I., Osher S. and Fatemi E., 1992. Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268, DOI: 10.1016/0167-2789(92)90242-F.

    Article  Google Scholar 

  • Tikhonov A.N. and Arsenin V.Y., 1977. Solutions of Ill-Posed Problems. Wiley and Sons, New York.

    Google Scholar 

  • Uieda L. and Barbosa V.C.F., 2012. Robust 3D gravity gradient inversion by planting anomalous densities. Geophysics, 77, G55–G66, DOI: 10.1190/geo2011-0388.1.

    Article  Google Scholar 

  • Van Zon A.T., 2006. Implicit Structural Inversion for Lithology Using a Gridded Model. Utrecht University, Utrecht, The Netherland.

    Google Scholar 

  • Van Zon A.T., Ditmar P., Chowdhury K. and Mondt J., 2007. Lithotype discrimination within a gridded model by inverting gravity data. Geophys. J. Int., 170, 481–491, DOI: 10.1111 /j.1365-246X.2007.03357.x.

    Article  Google Scholar 

  • Vogel C.R., Nonsmooth regularization. In: Engl H.W., Louis A.K. and Rundell W. (Eds), Inverse Problems in Geophysical Applications. SIAM, Philadelphia, PA, 1–11.

  • Vogel C.R. and Oman M.E., 1996. Iterative methods for total variation denoising. SIAM J. Sci. Comput., 17, 227–238, DOI: 10.1137/0917016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Sobouti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobouti, A., Motagh, M. & Sharifi, M.A. Inversion of surface gravity data for 3-D density modeling of geologic structures using total variation regularization. Stud Geophys Geod 60, 69–90 (2016). https://doi.org/10.1007/s11200-014-0671-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-0671-2

Keywords

Navigation