Skip to main content
Log in

Analytical method for error analysis of high-low satellite-to-satellite tracking missions

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We present an analytical relationship between the high-low satellite-to-satellite tracking measurement errors and the accuracy of the gravity field recovery from the point of view of signal theory, which concerns the field where geodesy is in contact with physics and technical sciences. This method enables us to gain a better understanding of the effects of the instrument noise and the mission parameters on the gravity field recovery directly, especially for the analysis of the noise spectral characteristics. It is a helpful tool for the pre-mission analysis before full-scale simulations are conducted. By taking the advantage of the analytical expression, this study discusses how the orbit errors and accelerometer noise degrade the accuracy of the gravity field recovery from high-low satellite-to-satellite tracking observations. The results show that the noise level of orbit errors is at least one to four orders of magnitude larger than that of accelerometers in the measurement bandwidth with the state-of-the-art technologies, which indicates that the accuracy of the gravity field coefficients is mainly limited by the level of orbit errors for high-low satellite-to-satellite tracking observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsov K. and Pail R., 2003. Assessment of two methods for gravity field recovery from GOCE GPS-SST orbit solutions. Adv. Geosci., 1, 121–126.

    Article  Google Scholar 

  • Baur O., Reubelt T., Weigelt M., Roth M. and Sneeuw N., 2012. GOCE orbit analysis: Long-wavelength gravity field determination using the acceleration approach. Adv. Space Res., 50, 385–396, DOI: 10.1016/j.asr.2012.04.022.

    Article  Google Scholar 

  • Cai L., Zhou Z., Zhu Z., Gao F. and Hsu H., 2012. Spectral analysis for recovering the Earth’s gravity potential by satellite gravity gradients. Chinese J. Geophys., 55, 1565–1571.

    Google Scholar 

  • Cai L., Zhou Z., Hsu H., Gao F., Zhu Z. and Luo J., 2013a. Analytical error analysis for satellite gravity field determination based on two-dimensional Fourier method. J. Geodesy, 87, 417–426, DOI: 10.1007/s00190-013-0615-6.

    Article  Google Scholar 

  • Cai L., Zhou Z., Gao F. and Luo J., 2013b. Lunar gravity gradiometry and requirement analysis. Adv. Space Res., 52, 715–722, DOI: 10.1016/j.asr.2013.04.009.

    Article  Google Scholar 

  • Colombo O.L., 1981. Numerical Methods for Harmonic Analysis on the Sphere. Report 310. Department of Geodetic Science, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Colombo O.L., 1986. Ephemeris errors of GPS satellites. Bull Geod., 60, 64–84. DOI: 10.1007/BF02519355.

    Article  Google Scholar 

  • Ditmar P., Visser P. and Klees R., 2003. On the joint inversion of SGG and SST data from the GOCE mission. Adv. Geosci., 1, 87–94, DOI: 10.5194/adgeo-1-87-2003.

    Article  Google Scholar 

  • ESA, 1999. The Four Candidate Earth Explorer Core Missions — Gravity Field and Steady-State Ocean Circulation Mission. ESA Report SP-1233(1), ESA Publications Division, c/o ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Frommknecht B., 2007. Integrated Sensor Analysis of the GRACE Mission. Ph.D. Thesis. Institute for Astronomical and Physical Geodesy, Technical University Munich, Munich, Germany.

    Google Scholar 

  • Gerlach C., Földvary L., Švehla D., Gruber T., Wermuth M., Sneeuw N., Frommknecht B., Oberndorfer H., Peters T. and Rothacher M., 2003. A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophys. Res. Lett., 30, 2037.

    Article  Google Scholar 

  • Gruber C., Novák P. and Sebera J., 2011. FFT-based high-performance spherical harmonic transformation. Stud. Geophys. Geod., 55, 489–500, DOI: 10.1007/s11200-011-0029-y.

    Article  Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical geodesy. Bull. Geod., 86, 491–492, DOI: 10.1007/BF02525647.

    Article  Google Scholar 

  • Jäggi A., Bock H., Prange L., Meyer U. and Beutler G., 2011. GPS-only gravity field recovery with GOCE, CHAMP, and GRACE. Adv. Space Res., 47, 1020–1028, DOI: 10.1016/j.asr.2010.11.008.

    Article  Google Scholar 

  • Jekeli C., 1999. The determination of gravitational potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astron., 75, 85–101, DOI: 10.1023/A:1008313405488.

    Article  Google Scholar 

  • Josselin V., Touboul P. and Kielbasa R., 1999. Capacitive detection scheme for space accelerometers applications. Sens. Actuator A-Phys., 78, 92–98, DOI: 10.1016/S0924-4247(99)00227-7.

    Article  Google Scholar 

  • Kim J., 2000. Simulation Sstudy of a Low-Low Satellite-to-Satellite Tracking Mission. Ph.D. Thesis. The University of Texas at Austin, Austin, TX.

    Google Scholar 

  • Koop R., 1993. Global Gravity Field Modelling Using Satellite Gravity Gradiometry. Publications on Geodesy, New Series 38. Netherlands Geodetic Commission, Delft, The Netherlands.

    Google Scholar 

  • Migliaccio F., Reguzzoni M. and Sanso F., 2004. Space-wise approach to satellite gravity field determination in the presence of coloured noise. J. Geodesy, 78, 304–313, DOI: 10.1007/s00190-004-0396-z.

    Article  Google Scholar 

  • Ogata K., 2010. Modern Control Engineering. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Pail R., Goiginger H., Schuh W.D., Hock E., Brockmann J.M., Fecher T., Gruber T., Mayer-Gürr T., Kusche J., Jaggi A. and Rieser D., 2010. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett., 37, L20314, DOI: 10.1029/2010GL044906.

    Article  Google Scholar 

  • Perosanz F., Biancale R., Loyer S., Lemoine J.-M., Perret A., Touboul P., Foulon B., Pradels G., Grunwald L., Fayard T., Vales N. and Sarrailh M., 2003. On board evaluation of the STAR accelerometer. In: Reigber C., Luhr H. and Schwintzer P. (Eds), First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies. Springer-Verlag, Berlin, Heidelberg, Germany, 11–18, DOI: 10.1007/978-3-540-38366-6_2.

    Chapter  Google Scholar 

  • Reigber C., Balmino G., Schwintzer P., Biancale R., Bode A., Lemoine J.-M., Konig R., Loyer S., Neumayer H., Marty J.-C., Barthelmes F., Perosanz F. and Zhu S.Y., 2002. A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys. Res. Lett., 29, 1692, DOI: 10.1029/2002GL015064.

    Article  Google Scholar 

  • Reigber C., Schwintzer P., Neumayer K.H., Barthelmes F., König R., Förste C., Balmino G., Biancale R., Lemoine J.M., Loyer S., Bruinsma S., Perosanz F. and Fayard T., 2003. The CHAMP-only earth gravity field model EIGEN-2. Adv. Space Res., 31, 1883–1888, DOI: 10.1016/S0273-1177(03)00162-5.

    Article  Google Scholar 

  • Schrama E.J.O., 1989. TheRrole of Orbit Errors in Processing Satellite Altimeter Data. Publications on Geodesy 33, Netherlands Geodetic Commission, Delft, The Netherlands.

    Google Scholar 

  • Schrama E.J.O., 1991. Gravity field error analysis: Applications of global positioning system receivers and gradiometers on low orbiting platforms. J. Geophys. Res., 96(B12), 20041–20051, DOI: 10.1029/91JB01972.

    Article  Google Scholar 

  • Schwintzer P., Kang Z. and Perosanz F., 2000. Accelerometry aboard CHAMP. In: Rummel R., Drewes H., Bosch W. and Hornik H. (Eds), Towards an Integrated Global Geodetic Observing System (IGGOS). International Association of Geodesy Symposia 120, Springer-Verlag, Berlin, Heidelberg, Germanz, 197–200, DOI: 10.1007/978-3-642-59745-9_39.

    Chapter  Google Scholar 

  • Sneeuw N., 2000. A semi-analytical approach to gravity field analysis from satellite observations. DGK Series C, No. 527, Verlag der Bayerischen Akademie der Wissenschaften, ISBN (Print) 3-7696-9566-6, ISSN 0065-5325.

    Google Scholar 

  • Tapley B.D., Bettadpur S., Watkins M. and Reigber C., 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, DOI: 10.1029/2004GL019920.

    Article  Google Scholar 

  • Touboul P., 2001. Space accelerometers: present status. In: Lammerzahl C., Everitt C.W.F. and Hehl F. (Eds), Gyros, Clocks, Interferometers...: Testing Relativistic Graviy in Space. Lecture Notes in Physics 562. Springer-Verlag, Berlin, Heidelberg, Germany, 273–291, DOI: 10.1007/3-540-40988-2_13.

    Chapter  Google Scholar 

  • Touboul P., Willemenot E., Foulon B. and Josselin V., 1999. Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution. Bollettino di Geofisica Teorica e Applicata, 40, 321–327.

    Google Scholar 

  • Visser P.N.A.M., Sneeuw N. and Gerlach C., 2003. Energy integral method for gravity field determination from satellite orbit coordinates. J. Geodesy, 77, 207–216, DOI: 10.1007/s00190-003-0315-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zebing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Zhou, Z. & Luo, J. Analytical method for error analysis of high-low satellite-to-satellite tracking missions. Stud Geophys Geod 59, 380–393 (2015). https://doi.org/10.1007/s11200-014-0153-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-0153-6

Keywords

Navigation