Skip to main content
Log in

Studying the Structural Phase Composition and Optical and Mechanical Properties of Al–Si–Re–O Coatings Deposited on Quartz Glass

  • Published:
Russian Physics Journal Aims and scope

The multi-component Al–Si–Re–O coating with a thickness of 3.5 μm was deposited on the quartz glass surface by the method of pulsed magnetron sputtering. Its structural phase state and optical and mechanical properties have been investigated. According to X-ray diffractometry and transmission electron microscopy, the structure of the coating is amorphous and has the following elemental composition: Al – 9.29 at.%, Si – 23 at.%, Re – 2.35 at.%, and O – 65.7 at.%. The present work studies the problem of crater formation under the bombardment of the quartz glass surface with Al–Si–Re–O coating by iron particles having a speed of 5–8 m/s. The study discovers protective properties of the Al–Si–Re–O coating manifested as an appreciable decrease of the surface density of the craters formed after impacts of iron microparticles as compared to the uncoated quartz glass. This effect is due to changes in the structure, phase composition, and mechanical properties of the glass surface layer coated by the reinforcing coating. The results show that the quartz glass with the Al–Si– Re–O coating remains transparent in the visible (T ≥ 77%) and UV ranges (T ≥ 23.8%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. I. Peltoniemi, N. Zubko, A. K. Virkki, et al., Adv. Space Res., 70, No. 10, 2961–2975 (2022); https://doi.org/10.1016/j.asr.2022.09.022.

    Article  ADS  Google Scholar 

  2. Y. Cai, X. Wang, Y. Luo, et al., Adv. Space Res., 69, No. 3, 1513–1527 (2022); https://doi.org/10.1016/j.asr.2021.12.022.

    Article  ADS  Google Scholar 

  3. L. T. Cornwell, P. J. Wozniakiewicz, M. J. Burchell, et al., Adv. Space Res., 72, No. 7, 2959–2970 (2022); https://doi.org/10.1016/j.asr.2022.07.022.

    Article  ADS  Google Scholar 

  4. M. J. Burchell, R. Corsaro, F. Giovane, et al., Procedia Eng., 58, 68–76 (2013); https://doi.org/10.1016/j.proeng.2013.05.010.

  5. C. P. Mark and S. Kamath, Space Policy, 47, 194–206 (2019); https://doi.org/10.1016/j.spacepol.2018.12.005.

  6. P. Williams, Acta Astronaut., 65, Nos. 3–4, 399–422 (2009); https://doi.org/10.1016/j.actaastro.2008.11.016.

  7. Y. Endo, H. Kojima, and P. M. Trivailo, Adv. Space Res., 70, No. 10, 2976–3002 (2022); https://doi.org/10.1016/j.asr.2022.09.024.

    Article  ADS  Google Scholar 

  8. N. Takeichi and N. Tachibana, Acta Astronaut., 189, 429–436 (2021); https://doi.org/10.1016/j.actaastro.2021.08.051.

  9. R. Clark, Y. Fu, S. Dave, and R. S. K. Lee, Adv. Space Res., 70, No. 11, 3271–3280 (2022); https://doi.org/10.1016/j.asr.2022.08.068.

    Article  ADS  Google Scholar 

  10. A. A. Voevodin, A. L. Yerokhin, V. V. Lyubimov, et al., 86–87, Part 2, 516–521 (1996); https://doi.org/10.1016/S0257-8972(96)03069-1.

  11. V. Sergeev, S. Psakhie, P. Chubik, et al., Vacuum, 143, 454–457 (2017); https://doi.org/10.1016/j.vacuum.2017.06.018.

  12. V. P. Sergeev, M. P. Kalashnikov, O. V. Sergeev, et al., J. Phys. Conf. Ser., 1799, No. 1, 012028 (2021); https://doi.org/10.1088/1742-6596/1799/1/012028.

  13. R. Magnusson, B. Paul, P. Eklund, et al., Vacuum, 187, 110074 (2021); https://doi.org/10.1016/j.vacuum.2021.110074.

  14. M. V. Fedorischeva, M. P. Kalashnikov, A. V. Voronov, and V.P. Sergeev, AIP Conf. Proc., 2509, No. 1, 020070 (2022); https://doi.org/10.1063/5.0084731.

  15. A. Vargas-Uscategui, E. Mosquera, and L. Cifuentes, Electrochim. Acta, 109, 283–290 (2013); https://doi.org/10.1016/j.electacta.2013.07.091.

  16. M. Castriota, E. Cazzanelli, G. Das, et al., Mol. Cryst. Liq. Cryst., 474, No. 1, 1–15 (2007); https://doi.org/10.1080/15421400701693435.

    Article  ADS  Google Scholar 

  17. J. V. Rojas and C. H. Castano, Radiat. Phys. Chem., 99, 1–5 (2014); https://doi.org/10.1016/j.radphyschem.2014.01.022.

  18. V. P. Sergeev, M. V. Fedorishcheva, A. R. Sungatulin, et al., Bull. Tomsk Polytechnic Univ., 319, 103–108 (2011).

    Google Scholar 

  19. I. A. Bozhko, E. V. Rybalko, M. V. Fedorishcheva, et al., AIP Conf. Proc., 1783, 020018 (2016); https://doi.org/10.1063/1.4966311.

  20. H. Çiçek and Y. Kübra, Int. J. Surf. Sci. Eng., 17, No. 2, 110–120 (2023); https://doi.org/10.1504/IJSURFSE.2023.130151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Tursunkhanova.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tursunkhanova, R.B., Sergeev, V.P., Kalashnikov, M.P. et al. Studying the Structural Phase Composition and Optical and Mechanical Properties of Al–Si–Re–O Coatings Deposited on Quartz Glass. Russ Phys J 67, 427–433 (2024). https://doi.org/10.1007/s11182-024-03140-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03140-1

Keywords

Navigation