Skip to main content
Log in

Effect of Tempering on Structure and Properties of Plasma Surfacing of R2M9U High-Speed Tool Steel

  • Published:
Russian Physics Journal Aims and scope

Using the methods of advanced materials science, the structural-phase states and properties of multiple plasma-surfaced layers of the R2M9U steel formed in a shielding-alloying nitrogen environment on the 30HGSA steel are studied after its subsequent triple high tempering. It is found out that a framework-type structure is formed in the surfaced layer, wherein the base element is iron and the atoms of Mo, N, Cr, and V are localized in lengthy interlayers of the skeletal network formed by the carbide phase of different compositions. The atoms of Al are concentrated in the globular particles chaotically distributed in the surface layer volume. Both in the layer surface and in the zone of its contact with the substrate there are microcracks located along the phase boundaries. After the triple high tempering, the framework material structure is retained. A significant increase (a factor of 1.4) in the surfaced layer microhardness is revealed, which is attributed to the formation of a martensitic structure in the grain bulk, implying substructural strengthening of the material. The tempering is accompanied by a decomposition of the solid solution, followed by the formation of submicron-sized second-phase particles, indicating a dispersion strengthening mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Gromov, A. S. Chapaikin, and A. S. Nevskii, Structure, Properties and Models of High-speed Steel after Tempering and Electron Beam Treatment, Poligrafist, Novokuznetsk (2024).

  2. Yu. F. Ivanov, V. E. Gromov, A. I. Potekaev, T. P. Guseva, A. S. Chapaikin, E. S. Vashchuk and D. A. Romanov, Russ. Phys. J., 66, No.7, 731 (2023), http://doi.https://doi.org/10.1007/s11182-023-02999-w.

  3. V. N. Gadalov, V. R. Petrenko, S. N. Kutepov, O. M. Gubanov, A. V. Filonovich, and A. A. Kalinin, Izvestiya TulGU. Technical sciences, Iss. 5, 362 (2023), http://doi.https://doi.org/10.24412/2071-6168-2023-5-362-363/.

  4. A. S. Akhmetov and Zh. V. Epemeeva, Perspekt. Mater., No. 3, 43 (2023).

  5. N. N. Cherenda, V. V. Uglov, A. M. Kashevskii, V. M. Astashiskii, and A. M. Kuzmitskii, BSU Journal Physics, No. 2, 61 (2018).

    Google Scholar 

  6. B. K. Rakhadilov, W. Wieleba, M. K. Kylyshkanov, A. B. Kenesbekov, and M. Maulet, Bull. Karaganda Uni. Physics Series, No. 2, 83 (2020).

  7. B. K. Rakhadilov, L. G. Zhurerova, M. Scheffler, and A. K. Khassenov, Bull. Karaganda Uni. Physics Series, No. 3, 59 (2018).

  8. C.-C. Ding, M.-D. Zhao, Z.-D. Li, and Y.-G. Gao, Trans. Mater. Heat Treat., 39(2), 49 (2018), http://doi.https://doi.org/10.13289/j.issn.1009-6264.2018-0311.

  9. P. V. Gladkii, V. F. Perepletchikov, and I. A. Ryabtsev, Weld. Int., 21, No. 9, 685 (2007).

    Article  Google Scholar 

  10. I. A. Ryabtsev and I. K. Senchenkov, Theory and practice of welding works, Ekotekhnologiya, Kiev (2013).

  11. I. K. Pokhodnya, V. N. Shlepakov, S. Yu. Maksimov, and I. A. Ryabtsev, Automatic welding. No. 12(692), 34 (2010).

    Google Scholar 

  12. A. N. Emelyushin E. V. Petrochenko, and S. P. Nefed’ev, Weld. Int., 27, No. 2, 150 (2013), https://doi.org/10.1080/09507116.2012.695548.

  13. S. P. Nefed’ev and A. N. Emelyushin, Vestnik Ugra State Uni., 3, 33 (2021).

  14. N. N. Malushin, D. A. Romanov, A. P. Kovalev, V. L. Osetkovskii, and L. P. Baschenko, Russ. Phys. J., 62, No. 10, 106 (2019).

    Google Scholar 

  15. N. N. Malushin, V. E. Gromov, and D. A. Romanov, Izv. Chern. Metallurg., 63, No. 9, 707 (2020).

    Google Scholar 

  16. N. N. Malushin, D. A. Romanov, V. L. Osetkovskii, A. P. Kovalev, E. A. Budovskikh, and D. V. Valuev, RF Patent No. 699488. Appl. as of 29.02.2019, publ. 05.09.2019, Bull. No. 25 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Gromov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, V.E., Ivanov, Y.F., Potekaev, A.I. et al. Effect of Tempering on Structure and Properties of Plasma Surfacing of R2M9U High-Speed Tool Steel. Russ Phys J 67, 259–266 (2024). https://doi.org/10.1007/s11182-024-03117-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03117-0

Keywords

Navigation