Skip to main content
Log in

Modeling the Interaction of a Heavy-Alloy Impactor with an Aluminum Alloy Barrier

  • Published:
Russian Physics Journal Aims and scope

Interaction of elongated cylindrical strikers made of tungsten alloy VNZh90 with a finite-thickness plate made of the D16T aluminum alloy is numerically modeled. The influence of the shape of the head of the striker on the process and the result of interaction is investigated. Interaction velocity range 300–600 m/s and interaction angles from 0 to 75 degrees are considered. The behavior of the materials of the striker and barrier is described by an elastoplastic model. Limit value of intensity of plastic deformations is used as fracture criterion. Modeling is carried out in a three-dimensional setting using the finite element method using the author's algorithm and the EFES 2.0 software complex, which allows modeling the fragmentation of interacting bodies with the formation of new contact and free surfaces, erosion fracture of materials. The adequacy of the mathematical model and numerical algorithm is confirmed by the good agreement of experimental and numerical results. The interaction of the striker with the flat and cone shape of the head part with the barrier was investigated, the conditions under which the striker ricochets off the barrier were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. P. Schonberg and R. A. Taylor, Penetration and Ricochet Phenomena in Oblique Hypervelocity Impact, AIAA J., 27 (5), 639–646 (1989).

    Article  ADS  Google Scholar 

  2. W. Johnson, A. K. Sengupta, and S. K. Ghosh, Int. J. Mech. Sci., 24 (7), 425–436 (1982).

    Article  Google Scholar 

  3. N. K. Gupta and V. Madhu, Int. J. Impact Eng., 19 (5–6), 395–414 (1997).

    Article  Google Scholar 

  4. J. A. Zukas and B. Gaskill, Int. J. Impact Eng., 18 (6), 601–610 (1996).

    Article  Google Scholar 

  5. N. K. Gupta and V. Madhu, Int. J. Impact Eng., 12 (3), 333–343 (1992).

    Article  Google Scholar 

  6. A. Kapahi, S. Sambasivan, and H. S. Udaykumar, J. Comput. Phys., 241, 308–332 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  7. B. Nishshanka, Ch. Shepherd, and P. Paranirubasingam, Forensic Sci. Int., 312, 110313 (2020).

    Article  Google Scholar 

  8. A. Manes, F. Serpellini, M. Pagani, et al., Int. J. Impact Eng., 69, 39–54 (2014).

    Article  Google Scholar 

  9. W. P. Schonberg and A. R. Ebrahim, Int. J. Impact Eng., 23, 823–834 (1999).

    Article  Google Scholar 

  10. A. Rajputa, M. A. Iqbal, and N. K. Gupta, Thin-Walled Struct., 126, 171–181 (2018).

    Article  Google Scholar 

  11. Y. X. Zhai, H. Wu, and Q. Fang, Def. Technol., 16, 50–68 (2020).

    Article  Google Scholar 

  12. F. Teresa, C. R. Christian, and M. Dirk, Int. J. Impact Eng., 131, 256–271 (2019).

    Article  Google Scholar 

  13. H. Wu, Q. Fang, Y. Peng, et al., Int. J. Impact Eng., 76, 232–250 (2015).

    Article  Google Scholar 

  14. J. D. Seid, J. M. Pereira, A. Gilat, et al., Int. J. Impact Eng., 62, 27–34 (2013).

    Article  Google Scholar 

  15. T. Børvik, M. Langseth, O. S. Hopperstad, and K. A. Malo, Int. J. Impact Eng., 22, 855–886 (1999).

    Article  Google Scholar 

  16. M. A. Iqbal, K. Senthil, V. Madhu, and N. K. Gupta, Int. J. Impact Eng., 110, 26–38 (2017).

    Article  Google Scholar 

  17. P. A. Radchenko, S. P. Batuev, and A. V. Radchenko, Phys. Mesomech., 24, 40–45 (2021).

    Article  Google Scholar 

  18. P. A. Radchenko, A. V. Radchenko, and S. P. Batuev, Phys. Mesomech., 25, 119–228 (2022).

    Article  Google Scholar 

  19. P. A. Radchenko, A. V. Radchenko, and S. P. Batuev, J. Eng. Phys. Thermophys., 95 (1), 90–96 (2022).

    Article  Google Scholar 

  20. P. A. Radchenko, S. P. Batuev, and A. V. Radchenko, Three-dimensional modeling of deformation and fracture of heterogeneous materials and structures under dynamic loads (EFES 2.0), RF Certificate of State Registration of Computer Program No. 2019664836 (November 14, 2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Radchenko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radchenko, P.A., Radchenko, A.V. & Batuev, S.P. Modeling the Interaction of a Heavy-Alloy Impactor with an Aluminum Alloy Barrier. Russ Phys J 66, 180–185 (2023). https://doi.org/10.1007/s11182-023-02923-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02923-2

Keywords

Navigation