Skip to main content

Advertisement

Log in

Spatiotemporal Dynamics of the Average and Turbulent Components of the Kinetic Wind Energy in the Lower Atmosphere from Minisodar Data

  • Published:
Russian Physics Journal Aims and scope

Based on post-processing of diurnal hourly measurements of three wind velocity components and their variances with an AV4000 minisodar in the lower 200-meter layer of the atmosphere, statistical analysis of the turbulent, ETКE, and average, EMКE, kinetic wind energy components has been performed. It was shown that for the diurnal period of continuous minisodar observations, the turbulent kinetic energy component in the ground atmospheric layer to altitudes of ~50 m was low. At altitudes in the range from 50 to 100 m, the turbulent kinetic energy ETКE increased, at altitudes exceeding 100 m, its growth rate intensified, and the maximum ETКE values were observed at altitudes of 150–200 m. It was established that the results of observations influenced significantly by time of the day. However, at any time, the maximum turbulent energy was localized at altitudes of ~100–200 m, which posed the greatest danger to light small-sized unmanned vehicles. The approach to revealing times and altitudes of maximum and minimum kinetic wind energy values from the minisodar data, that is, the most and least favorable time and altitude range for flights of light small-sized unmanned aerial vehicles has been proposed, and its efficiency has been illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Lundquist, A. Clifton, S. Dana, et al., Wind Energy Instrumentation Atlas, Golden CO: National Renewable Energy Laboratory, NREL/TP-5000-68986 (2019); https://www.nrel.gov/docs/fy19osti/68986/pdf.

  2. T. Foken, Micrometeorology, Springer Verlag, Berlin; Heidelberg, (2008).

  3. M. E. Haggagy, Berichte des Meteorologischen Institutes des Universität Freiburg, No. 8 (2003).

  4. Fangwei Hou and Mohammad Jatari, Sustain. Cities Soc., 62, 102376 (2020).

    Article  Google Scholar 

  5. Bo Hang Wang, Dao Bo Wang, Zain Anwar Ali, et al., Meas. Control, 52 (7–8), 731–739 (2019).

  6. K. P. Valavanis, ed. Unmanned Aerial Vehicle, Springer, Netherlands (2011).

    Google Scholar 

  7. A. Peña, C. B. Hasager, M. Badger, et al., Remote Sensing for Wind Energy, DTU Wind Energy-E-Report-0084(EN), Technical University of Denmark (2015).

  8. A. K. Monzikova, V. N. Kudryavtsev, E. S. Larsen, and B. Chapron, Scientific Notes of Russian State Hydrometeorological University, No. 30, 116–133 (2013).

    Google Scholar 

  9. L. Valldecabres, N. G. Nygaard, L. Vera-Tudela, et al., Remote Sens., 10 (11), 1701 (2018); 10.3390.rs/10111701.

  10. L. G. Shamanaeva, A. I. Potekaev, N. P. Krasnenko, and O. F. Kapegesheva, Russ. Phys. J., 61, 2282–2287 (2018).

    Article  Google Scholar 

  11. A. I. Potekaev, L. G. Shamanaeva, and V. V. Kulagina, Atmosphere, 12 (4), 421 (2021); https://doi.org/10.3390/atmos12040421.

  12. A. I. Potekaev, N. P. Krasnenko, and L. G. Shamanaeva, Atmosphere, 12 (10), 1347 (2021); https://doi.org/10.3390/atmos12101347.

  13. V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidar in a Turbulent Atmosphere [in Russian], Publishing House of the Institute of Atmospheric Optics of the SB RAS, Tomsk (2013).

  14. L. A. Bolbasova, A. Yu. Shikhovtsev, E. A. Kopylov, et al., MNRAS, No. 482, 2619–2626 (2019).

    Google Scholar 

  15. L. Valldecabres, N. G. Nygaard, L. Vera-Tudela, et al., Remote Sens., 10 (11), 1701 (2018); https://doi.org/10.3390.rs/10111701.

  16. A. G. Gorelik, S. F. Kolomiets, and G. G. Shchukin, Sci. Notes Russ. State Hydrometeorol. Univ., No. 18, 70–89 (2011).

  17. I. A. Gotyur, V. Yu. Zhukov, Yu. V. Kuleshov, et al., Sci. Notes Russ. State Hydrometeorol. Univ., No. 21, 66–75 (2011).

  18. Doppler MiniSoDAR System, Operation and Maintenance Manual, Atmospheric Systems Corporation (2008).

  19. K. H. Underwood and L. G. Shamanaeva, Russ. Phys. J., 53, 526–532 (2010).

    Article  Google Scholar 

  20. S. Emeis, Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation, Springer Science & Business Media (2012).

  21. S. Emeis, Surface-Based Remote Sensing of the Atmospheric Boundary Layer, Springer Science & Business Media (2010).

  22. G. K. Greenhut and G. Mastrantonio, J. Appl. Meteorol., 28, 99–106 (1989).

    Article  ADS  Google Scholar 

  23. A. Y. Shikhovtsev, A. V. Kiselev, P. G. Kovadlo, et al, Atm. Ocean. Opt., 33, 295–301 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Potekaev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potekaev, A.I., Shamanaeva, L.G. & Krasnenko, N.P. Spatiotemporal Dynamics of the Average and Turbulent Components of the Kinetic Wind Energy in the Lower Atmosphere from Minisodar Data. Russ Phys J 65, 2238–2244 (2023). https://doi.org/10.1007/s11182-023-02896-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02896-2

Keywords

Navigation