Skip to main content
Log in

Effect of Polarization on Exciton Properties in a Semiconductor Quantum Dot

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

The Wannier–Mott exciton in a semiconductor quantum dot is considered. The effect of medium polarization and the effect of screening of the “electron-hole” Coulomb interaction on the exciton properties are studied by the method of direct numerical solution of the Schrödinger equation. Polarization and screening have the greatest effect on exciton levels, if the quantum dot radius is commensurate with the exciton Bohr radius and the electron and hole polaron radii (strong confinement mode). As the quantum dot radius decreases, the sign of the intraexciton contribution to the energy changes, which is explained by an increase in the kinetic energy of the electron and hole and the loss of their bound state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Maximov, A. M. Nadtochiy, S. A. Mintairov, et al., Appl. Sci., 10, 103 (2020).

    Article  Google Scholar 

  2. U. Woggon and S. V. Gaponenko, Phys. Stat. Sol. (b), 189, 285 (1995).

    Article  ADS  Google Scholar 

  3. S. Ghimire and V. Biju, J. Photochem. Photobiol. C, 34, 137 (2018).

    Article  Google Scholar 

  4. S. Germanis, P. Atkinson, R. Hostein, et al., Phys. Rev. B, 98, 155303 (2018).

    Article  ADS  Google Scholar 

  5. M. Holtkemper, G. F. Quinteiro, D. E. Reiter, et al., Phys. Rev. Res., 3, 013024 (2021).

    Article  Google Scholar 

  6. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, et al., Pis’ma Zh. Eksp. Teor. Fiz., 68, Vyp. 2, 125 (1998).

  7. R. T. Senger and K. K. Bajaj, Phys. Stat. Sol. (b), 236, No. 1, 82 (2003).

    Article  ADS  Google Scholar 

  8. M. Nilsson, L. Namazi, S. Lehmann, et al., Phys. Rev. B, 94, 115313 (2016).

    Article  ADS  Google Scholar 

  9. P. E. Lippens and M. Lannoo, Phys. Rev. B, 41, 6079 (1990).

    Article  ADS  Google Scholar 

  10. G. T. Einevoll, Phys. Rev. B, 45, 3410 (1992).

    Article  ADS  Google Scholar 

  11. T. Takagahara and K. Takeda, Phys. Rev. B, 46, 15578(R) (1992).

    Article  ADS  Google Scholar 

  12. M. Boero, J. M. Rorison, G. Duggan, et al., Surf. Sci. 377–379, 371 (1997).

    Article  ADS  Google Scholar 

  13. J. L. Marin, R. Riera, and S. A. Cruz, J. Phys.: Cond. Matter., 10, 1349 (1998).

    ADS  Google Scholar 

  14. K. Oshiro, K. Akai, and M. Matsuura, Phys. Rev. B, 59, 10850 (1999).

    Article  ADS  Google Scholar 

  15. R. T. Senger and K. K. Bajaj, Phys. Rev. B, 68, 045313 (2003).

    Article  ADS  Google Scholar 

  16. A. Franceschetti, H. Fu, L. W. Wang, et al., Phys. Rev. B, 60, 1819 (1999).

    Article  ADS  Google Scholar 

  17. Shi Jun-Jie and Chin. Phys., 11, No. 12, 1286 (2002).

    Google Scholar 

  18. S. Corni, M. Brasken, M. Lindberg, et al., Phys. Rev. B., 67, 045313 (2003).

    Article  ADS  Google Scholar 

  19. S. I. Pokutnii, Fiz. Tekh. Poluprovodn., 41, No. 11, 1341 (2007).

    Google Scholar 

  20. A. I. Yakimov, A. A. Bloshkin, and A. V. Dvurechenskii, Pis’ma Zh. Eksp. Teor. Fiz., 90, Vyp. 8, 621 (2009).

  21. G. G. Zegrya and D. M. Samosvat, Zh. Eksp. Teor. Fiz., 135, Vyp. 6, 1043 (2009).

  22. R. S. Knox, Theory of Excitons, Academic Press (1963).

  23. H. Haken, Polarons and Excitons, ed. C. G. Kuper and G. D. Whitfield, Oliver and Boyd Ltd, Edinburgh (1963).

  24. J. Pollmann and H. Buttner, Phys. Rev. B, 16, 4480 (1977).

    Article  ADS  Google Scholar 

  25. A. Messiah, Quantum Mechanics, Dover Publications (2014).

  26. L. D. Landau and E. M. Livshits, Quantum Mechanics (Nonrelativistic Theory) [in Russian], Fizmatlit, Moscow (2002).

    Google Scholar 

  27. Al. L. Efros, Fiz. Tekh. Poluprovodn., 16, No. 7, 1209 (1982).

  28. Y. Kayanuma, Phys. Rev. B, 38, 9797 (1988).

    Article  ADS  Google Scholar 

  29. A. D. Yoffe, Adv. Phys., 42, No. 2, 173 (1993).

    Article  ADS  Google Scholar 

  30. H. B. Keller, Numerical Methods for Two-Point Boundary-Value Problems, Dover Publications (2018).

  31. L.-W. Wang and A. Zunge, Phys. Rev. B, 53, 9579 (1996).

    Article  ADS  Google Scholar 

  32. H. Yeo, J. S. Lee, M. E. Khan, et al., J. Phys. Mater., 3, No. 3, 034012 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sh. Rekhviashvili.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 15–23, December 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekhviashvili, S.S. Effect of Polarization on Exciton Properties in a Semiconductor Quantum Dot. Russ Phys J 65, 2058–2067 (2023). https://doi.org/10.1007/s11182-023-02871-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02871-x

Keywords

Navigation