Skip to main content
Log in

Magnetization and Curie Point of LiZn Ferrite Synthesized by Electron Beam Heating of Mechanically Activated Reagents

  • Published:
Russian Physics Journal Aims and scope

The paper studies magnetization of Li0.4Fe2.4Zn0.2O4 lithium-zinc ferrite sintered by electron beam heating of a mechanically activated mixture of initial Fe2O3–Li2CO3–ZnO reagents based on measurements of the specific saturation magnetization and Curie point. Initial reagents are mechanically activated in a planetary ball mill for different time at 1290 and 2220 rpm grinding rate. Specimens are heated by using the pulse accelerator ILU-6 at the electron energy of 2.4 MeV. The synthesis temperature is 600 and 750°C at the exposure time not over 120 minutes. It is shown that preliminary grinding at 2220 rpm and successive electron beam heating at 750°C for 120 minutes, lead to the formation of the main ferrite concentration with the chemical formula specified during the reagent mixing. This is confirmed by the data on the specific saturation magnetization of 80 emu/g and the nominal value of the Curie point of 500°C. This mode allows to significantly reduce the ferrite synthesis temperature compared to the traditional ceramic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Anupama, V. Rathod, V. M. Jali, and B. Sahoo, J. Alloys Compd., 728, 1091–1100 (2017). https://doi.org/10.1016/j.jallcom.2017.09.099.

    Article  Google Scholar 

  2. M. S. Ruiz and S. E. Jacobo, Physica B, 407, 3274–3277 (2012). https://doi.org/10.1016/j.physb.2011.12.085.

    Article  ADS  Google Scholar 

  3. Y. Gao and Z. Wang, JMMM, 528, 167808 (2021). https://doi.org/10.1016/j.jmmm.2021.167808.

  4. M. Mahmoudi and M. Kavanlouei, JMMM, 384, 276–283 (2015). https://doi.org/10.1016/j.jmmm.2015.02.053.

    Article  ADS  Google Scholar 

  5. I. M. Isaev, V. G. Kostishin, V. V. Korovushkin, et al., Tech. Phys., 66, 1216–1220 (2021). https://doi.org/10.1134/S1063784221090085.

    Article  Google Scholar 

  6. Y. Guo, J. Zhu, and H. Li, Ceram. Int., 47, 9111–9117 (2021). https://doi.org/10.1016/j.ceramint.2020.12.034.

    Article  Google Scholar 

  7. M. H. Al-Dharob, I. M. Abdulmajeed, A. H. Taha, et al., Digest J. Nanomater. Biostruct., 17, No. 1, 201–208 (2022), https://chalcogen.ro/201_Al-DharobMH.pdf.

  8. X. Wang, K. Yin, T. Cao, et al., J. Alloys Compd., 885, 160983 (2021). https://doi.org/10.1016/j.jallcom.2021.160983.

  9. G. C. Wakde, V. R. Raghorte, G. B. Pethe, et al., Ferroelectrics, 587, No. 1, 18–32 (2022). https://doi.org/10.1080/00150193.2022.2034409.

    Article  ADS  Google Scholar 

  10. D. V. Wagner, O. A. Dotsenko, and V. A. Zhuravlev, Russ. Phys. J., 62, No. 4, 581–588 (2019).

    Article  Google Scholar 

  11. G. R. Gajula, L. R. Buddiga, K. N. Chidambara Kumar, et al., J. Sci.: Adv. Mater. Dev., 3, No. 2, 230–235 (2018). https://doi.org/10.1016/j.jsamd.2018.04.007.

  12. S. Kotru, R. Paul, and A. Q. Jaber, Mater. Chem. Phys., 276, 125357 (2022). https://doi.org/10.1016/j.matchemphys.2021.125357.

  13. Q. Khan, A. Majeed, N. Ahmad, et al., Mater. Chem. Phys., 273, 125028 (2021). https://doi.org/10.1016/j.matchemphys.2021.125028.

  14. V. A. Zhuravlev, A. V. Zhuravlev, V. V. Atamasov, and G. I. Malenko, Russ. Phys. J., 62, No. 10, 1926–1936 (2020). https://doi.org/10.17223/00213411/62/10/162.

  15. A. A. Sattar, H. M. El-Sayed, W. R. Agami, and A. A. Ghani, Am. J. Appl. Sci., 4, No. 2, 89–93 (2007). https://doi.org/10.3844/AJASSP.2007.89.93.

    Article  Google Scholar 

  16. P. Kumar, J. K. Juneja, S. Singh, et al., Ceram. Int., 41, 3293–3297 (2015). https://doi.org/10.1016/j.ceramint.2014.10.092.

    Article  Google Scholar 

  17. P. Kumar, J. K. Juneja, C. Prakash, et al., Ceram. Int., 40, 2501–2504 (2014). https://doi.org/10.1016/j.ceramint.2013.07.063.

    Article  Google Scholar 

  18. L. Jia, Y. Zhao, F. Xie, et al., AIP Adv., 6, 056214 (2016). https://doi.org/10.1063/1.4943928.

  19. V. G. Kostishin, R. I. Shakirzyanov, A. G. Nalogin, et al., Phys. Solid State, 63, No. 3, 435–441 (2021). https://doi.org/10.1134/S1063783421030094.

    Article  ADS  Google Scholar 

  20. V. G. Kostishin, V. G. Andreev, V. V. Korovushkin, et al., Inorg. Mater., 50, 1317 (2014). https://doi.org/10.1134/S0020168514110089.

    Article  Google Scholar 

  21. V. G. Kostishin, V. V. Korovushkin, A. G. Nalogin, et al., Phys. Solid State, 62, 1156 (2020). https://doi.org/10.1134/S1063783420070124.

    Article  ADS  Google Scholar 

  22. V. A. Zhuravlev, E. P. Naiden, R. V. Minin, et al., IOP Conf. Ser.: Mater. Sci. Eng., 81, 012003 (2015). https://doi.org/10.1088/1757-899X/81/1/012003.

  23. E. N. Lysenko, E. V. Nikolaev, V. A. Vlasov, and A. P. Surzhikov, Nucl. Instrum. Methods Phys. Res. B, 474, 49–56 (2020). https://doi.org/10.1016/j.nimb.2020.04.026.

    Article  ADS  Google Scholar 

  24. V. L. Auslender, I. G. Bochkarev, V. V. Boldyrev, et al., Solid State Ion., 101–103, 489–493 (1997).

    Article  Google Scholar 

  25. N. Z. Lyakhov, V. V. Boldyrev, A. P. Voronin, et al., J. Therm. Anal. Calorim., 43, 21−31 (1995). https://doi.org/10.1007/BF02635965.

    Article  Google Scholar 

  26. V. V. Boldyrev, A. P. Voronin, O. S. Gribkov, et al., Solid State Ion., 36, 1–6 (1989). https://doi.org/10.1016/0167-2738(89)90051-9.

    Article  Google Scholar 

  27. E. N. Lysenko, A. P. Surzhikov, A. V. Malyshev, et al., Izv. Vyssh. Uchebn. Zaved., Khimiya i khimicheskaya tekhnologiya, 61, No. 6, 69–75 (2018).

  28. E. N. Lysenko, V. A. Vlasov, A. P. Surzhikov, and A. I. Kupchishin, Inorg. Mater.: Appl. Res., 13, No. 2, 494–500 (2022).

  29. S. A. Mazen and N. I. Abu-Elsaad, JMMM, 442, 72–79 (2017).

    Article  ADS  Google Scholar 

  30. V. Berbenni, A. Marini, P. Matteazzi, et al., J. Eur. Ceram. Soc., 23, 527–536 (2003). https://doi.org/10.1016/S0955-2219(02)00150-4.

    Article  Google Scholar 

  31. A. P. Surzhikov, E. N. Lysenko, A. V. Malyshev, and O. G. Vasil'eva, Izv. Vyssh. Uchebn. Zaved., Fiz., 56, No. 1/2, 159–162 (2013).

  32. E. N. Lysenko, V. A. Vlasov, and A. P. Surzhikov, Nucl. Nucl. Instrum. Methods Phys. Res. B, 466, 31–36 (2020). https://doi.org/10.1016/j.nimb.2020.01.010.

  33. V. L. Auslender, A. A. Bryazgin, B. L. Faktorovich, et al., J. Radiat. Phys. Chem., 63, 613–615 (2002). https://doi.org/10.1016/S0969-806X(01)00672-7.

    Article  ADS  Google Scholar 

  34. A. L. Astafyev, E. N. Lysenko, and A. P. Surzhikov, J. Therm. Anal. Calorim., 136, 441–445 (2019).

    Article  Google Scholar 

  35. D. M. Lin, H. S. Wang, M. L. Lin, et al., J. Therm. Anal. Calorim., 58, 347–353 (1999). https://doi.org/10.1023/A:1010199004211.

    Article  Google Scholar 

  36. P. K. Gallagher, J. Therm. Anal. Calorim., 49, 33–44 (1997). https://doi.org/10.1007/BF01987419.

    Article  Google Scholar 

  37. M. E. Brown and P. K. Gallagher, eds., Handbook of Thermal Analysis and Calorimetry, Vol. 5, Elsevier Science (2008). https://doi.org/10.1016/S1573-4374(13)60004-7.

  38. N. I. Abu-Elsaad, S. A. Mazen, and H. M. Salem, J. Alloys Compd., 835, 155227 (2020). https://doi.org/10.1016/j.jallcom.2020.155227.

  39. P. V. B. Reddy, V. R. Reddy, A. Gupta, et al., Hyperfine Interaction, 183, 81–86 (2008).

    Article  ADS  Google Scholar 

  40. P. V. B. Reddy, B. Ramesh, and C. G. Reddy, Physica B, 405, 1852–1856 (2010). https://doi.org/10.1016/j.physb.2010.01.062.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Lysenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 86–92, November, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, E.N., Vlasov, V.A., Surzhikov, A.P. et al. Magnetization and Curie Point of LiZn Ferrite Synthesized by Electron Beam Heating of Mechanically Activated Reagents. Russ Phys J 65, 1886–1892 (2023). https://doi.org/10.1007/s11182-023-02847-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02847-x

Keywords

Navigation