Skip to main content
Log in

Magnetically Tunable Bandpass Filter of Teraherz Radiation

  • Published:
Russian Physics Journal Aims and scope

A magnetically tunable bandpass filter of terahertz radiation is created and investigated. The filter is a cell with a magnetic fluid and a system of inductance coils made in the form of Helmholtz rings. The magnetic fluid consists of automotive synthetic engine oil and 5BDSR alloy microparticles with a mixed amorphouscrystalline structure. When a cell is placed between the inductance coils and under the action of an external magnetic field, the microparticles are oriented along the magnetic field vector, forming periodic filamentous structures. The filter is controlled by changing the magnitude of the magnetic induction. Eighteen samples of similar bandpass filters were prepared and studied, differing in the properties of the magnetic fluid (concentration and size of magnetic particles). The presented results are useful for creating bandpass magnetically controlled terahertz radiation filters with the required parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Borovkova, M. Khodzitsky, P. Demchenko, et al., Biomed. Opt. Express, 9, No. 5, 2266–2276 (2018).

    Article  Google Scholar 

  2. O. Cherkasova, M. Nazarov, A. Shkurinov, Opt. Quantum Electron., 48, No. 3, 1–12 (2016).

    Article  Google Scholar 

  3. S. I. Gusev, M. A. Borovkova, M. A. Strepitov, and M. K. Khodzitsky, Proc. SPIE, 9537, 95372A-1–95372A-6 (2015).

  4. B. You, J.-Y Lu. Opt. Express, 24, No. 16, 18013–18023 (2016).

  5. R. Gente and M. Koch, Plant Methods, 11, No. 15, 1–92015.

    Google Scholar 

  6. T. Nagatsuma, G. Ducournau, and C. Renaud, Nature Photonics, 10, 371–379 (2016).

    Article  ADS  Google Scholar 

  7. M. Saqlain, N. Idrees, X. Cao, et al., Appl. Opt., 58, No. 25, 6762–6769 (2019).

    Article  ADS  Google Scholar 

  8. K. Ahi, S. Shahbazmohamadi, and N. Asadizanjani, Opt. Laser. Eng., 104, 274–284 (2018).

    Article  Google Scholar 

  9. A. Hernandez-Serrano, S. Corzo-Garcia, E. Garcia-Sanchez, et al., Appl. Opt., 53, No. 33, 7872–7876 (2014).

    Article  ADS  Google Scholar 

  10. Q. Yang, B. Deng, H. Wang, and Y. Qin, Electron. Lett., 52, No. 25, 2059–2061 (2016).

    Article  ADS  Google Scholar 

  11. B. Ferguson, S. Wang, D. Gray, et al., Opt. Lett., 27, No. 15, 1312–1314 (2002).

    Article  ADS  Google Scholar 

  12. T. Mohr, S. Breuer, G. Giuliani, and W. Elsäßer, Opt. Express, 23, No. 21, 27221–27229 (2015).

    Article  ADS  Google Scholar 

  13. M. C. Kemp, P. F. Taday, B. E. Cole, et al., Proc. SPIE, 5070, 44–52 (2003).

    Article  ADS  Google Scholar 

  14. J. Federici, B. Schulkin, F. Huang, et al., Semicond. Sci. Technol., 20, No. 7, 266–280 (2005).

    Article  Google Scholar 

  15. S. Krimi, J. Klier, J. Jonuscheit, et al., Appl. Phys. Lett., 109, No. 2, 021105-1–021105-4 (2016).

  16. V. Y. Soboleva, D. A. Gomon, E. A. Sedykh, et al., J. Opt. Technol., 84, No. 8, 521–524 (2017).

    Article  Google Scholar 

  17. D. Gomon, E. Sedykh, S. Rodrígues, et al., Chin. Opt., 11, No. 1, 47−59 (2018).

    Article  Google Scholar 

  18. A. N. Grebenchukov, A. D. Zaitsev, and M. K. Khodzitsky, Chin. Opt, 11, No. 2, 166–173 (2018).

    Article  Google Scholar 

  19. H. Shahounvand and A. Fard, Physics: Prog. Inform. Opt., 2, No. 11, 1−7 (2020).

    Google Scholar 

  20. D. Sun, L. Qi, and Z. Liu, Result. Phys., 16, 102887 (2020).

    Article  Google Scholar 

  21. A. Gavdush, N. Chernomyrdin, D. Lavrukhin, et al., Opt. Express, 28, No. 18, 26228–26238 (2020).

    Article  ADS  Google Scholar 

  22. J.-F. Ruan, F. Lan, Z. Tao, et al., Phys. Lett. A, 421, 127705 (2022).

    Article  Google Scholar 

  23. N. Akter, M. Karabiyik, and N. Pala, IEEE Photonics Conference IPC, (2019).

  24. L.-L. Xu, J.-L. Xue, Y.-X. Fan, et al., J. Phys. D: Appl. Phys., 55, 025108 (2022).

    Article  ADS  Google Scholar 

  25. Y. Huang, Q. He, D. Zhang, and Kanamori Y., Opt. Rev., 28, 92–98 (2021).

  26. T. Li, X. Luo, F. Hu, et al., J. Phys. D: Appl. Phys., 54, No. 43, 435105-1–435105-6 (2021).

  27. M. A. Odit, I. B. Vendik, D. S. Kozlov, and V. N. Torbenko, Proceed. of All-Russian Conf. Microwave Microelectronics [in Russian] (2012).

  28. Y. Chen, J. Cheng, and C. Liang, Adv. Cond. Matter. Phys., 2020, 1–6 (2020).

    Google Scholar 

  29. F. Hu, H. Wang, X. Zhang, et al., IEEE J. Selected Topics Quantum Electron., 25, No. 3, 4700207 (2019).

    Article  Google Scholar 

  30. S. Li, H. Liu, Q. Sun, and N. Huang, IEEE Photon. Technol. Lett., 27, No. 7, 752–754 (2015).

    Article  Google Scholar 

  31. Z. Wei, Y. Jiang, S. Zhang, et al., IEEE Photon. J., 14, No. 1, 5905306 (2022).

    Google Scholar 

  32. S. Chen, F. Fan, S. Chang, et al., Opt. Express, 22, No. 6, 6313–6321 (2014).

    Article  ADS  Google Scholar 

  33. D. O. Zyat’kov, Z. S. Kochnev, A. I. Knyazkova, and A. V. Borisov, Russ. Phys. J., 62, No. 3, 400–405 (2019).

  34. Z. S. Kochnev, A. I. Knyaz’kova, T. A. Meshcheryakova, et al., Russ. Phys. J., 64, No. 11, 2129–2134 (2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. S. Kochnev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 55–62, October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochnev, Z.S., Kistenev, Y.V. & Borisov, A.V. Magnetically Tunable Bandpass Filter of Teraherz Radiation. Russ Phys J 65, 1667–1675 (2023). https://doi.org/10.1007/s11182-023-02816-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02816-4

Keywords

Navigation