Skip to main content
Log in

Analysis of Radial Cross Sections of the Potential Energy of the Interacting О3–O2 Complex

  • Published:
Russian Physics Journal Aims and scope

The article presents preliminary results of calculations of the potential energy of the interacting O3–O2 complex. The study of this complex is important for modeling the ozone formation reaction in the stratospheric layer of the Earth’s atmosphere. Calculations were carried out from the first principles of the quantum theory (ab initio) using explicitly correlated spin-unrestricted coupled cluster method [UCCSD(T)–F12a] in combination with the correlation-consistent basis set [aug-cc-pVTZ] to describe molecular orbitals. The radial dependences obtained at selected angular orientations are discussed in comparison with the O3–N2 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chapman, Mem. Roy. Meteor. Soc., 3 (26), 103–125 (1930).

    Google Scholar 

  2. P. Fleurat-Lessard, S. Grebenshchikov, R. Siebert, et al., J. Chem. Phys., 118, 610−621 (2003).

    Article  ADS  Google Scholar 

  3. F. Holka, P. G. Szalay, T. Müller, and VI. G. Tyuterev, J. Phys. Chem. A, 114, 9927 (2010).

    Article  Google Scholar 

  4. K. Mauersberger, B. Erbacher, D. Krankowsky, et al., Science, 283 (5400), 370–372 (1999).

    Article  ADS  Google Scholar 

  5. M. H. Thiemens, Science, 283 (5400), 341–345 (1999).

    Article  ADS  Google Scholar 

  6. V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, et al., J. Chem. Phys., 139, 134307 (2013).

    Article  ADS  Google Scholar 

  7. R. Dawes, P. Lolur, A. Li, et al., J. Chem. Phys., 139, 201103 (2013).

    Article  ADS  Google Scholar 

  8. Z. Sun, D. Yu, W. Xie, et al., J. Chem. Phys., 142, 174312 (2015).

    Article  ADS  Google Scholar 

  9. S. A. Lahankar, J. Zhang, T. K. Minton, et al., J. Phys. Chem. A, 120 (27), 5348–5359 (2016).

    Article  Google Scholar 

  10. P. Honvault, G. Guillon, R. Kochanov, and V. Tyuterev, J. Chem. Phys., 149, 214304 (2018).

    Article  ADS  Google Scholar 

  11. G. Guillon, P. Honvault, R. Kochanov, and VI. Tyuterev, J. Phys. Chem. Lett., 9 (8), 1931−1936 (2018).

    Article  Google Scholar 

  12. M. R. Wiegell, N. W. Larsen, T. Pedersen, and H. Egsgaard, Int. J. Chem. Kinet., 29, 745 (1997).

    Article  Google Scholar 

  13. S. Anderson, F. Klein, and F. Kaufman, J. Chem. Phys., 83, 1648 (1985).

    Article  ADS  Google Scholar 

  14. P. Fleurat-Lessard, S. Y. Grebenshchikov, R. Schinke, et al., J. Chem. Phys., 119, 4700 (2003).

    Article  ADS  Google Scholar 

  15. B. Abel, A. Charvát, and S. F. Deppe, Chem. Phys. Let., 277 (4), 347–355 (1997).

    Article  ADS  Google Scholar 

  16. U. Wachsmuth and B. Abel, J. Geophys. Res., 108, 4473 (2003).

    Article  Google Scholar 

  17. S. Vasilchenko, D. Mondelain, S. Kassi, and A. Campargue, J. Quant. Spectrosc. Radiat. Transfer, 272, 107678 (2021).

    Article  Google Scholar 

  18. S. Yu. Grebenshchikov, Z.-W. Qu, H. Zhu, and R. Schinke, J. Chem. Phys., 125, 021102 (2006).

    Article  ADS  Google Scholar 

  19. D. Mondelain, R. Jost, S. Kassi, et al., J. Quant. Spectrosc. Radiat. Transfer, 113, 840–849 (2012).

    Article  ADS  Google Scholar 

  20. D. Lapierre, A. Alijah, R. Kochanov, et al., Phys. Rev. A, 94 (4), 042514 (2016).

    Article  ADS  Google Scholar 

  21. C. H. Yuen, D. Lapierre, F. Gatti, et al., J. Phys. Chem. A, 123 (36), 7733–7743 (2019).

    Article  Google Scholar 

  22. V. Kokoouline, D. Lapierre, A. Alijah, and VI Tyuterev, Phys. Chem. Chem. Phys., 22, 15885–15899 (2020).

    Article  Google Scholar 

  23. S. Vasilchenko, A. Barbe, E. Starikova, et al., Phys. Rev. A, 102, 052804 (2020).

    Article  ADS  Google Scholar 

  24. Y. Q. Gao and R. A. Marcus, J. Chem. Phys., 116, 137 (2002).

    Article  ADS  Google Scholar 

  25. Y.Q. Gao and R. A. Marcus, Science, 293, 259–263 (2001).

    Article  ADS  Google Scholar 

  26. A. J. C. Varandas, A. A. C. C. Pais, J. M. C. Marques, and W. Wang, Chem. Phys. Lett., 249, 264–271 (1996).

    Article  ADS  Google Scholar 

  27. T. A. Baker and G. I. Gellene, J. Chem. Phys., 117, 7603–7613 (2002).

    Article  ADS  Google Scholar 

  28. R. Schinke and P. Fleurat-Lessard, J. Chem. Phys., 122, 094317 (2005).

    Article  ADS  Google Scholar 

  29. M. V. Ivanov and R. Schinke, Mol. Phys., 108 (3–4), 259–268 (2010).

    Article  ADS  Google Scholar 

  30. M. Mirahmadi, J. Perez-Rios, O. Egorov, et al., Phys. Rev. Lett., 128, 108501 (2022).

    Article  ADS  Google Scholar 

  31. D. Charlo and D. C. Clary, J. Chem. Phys., 120, 2700–2707 (2004).

    Article  ADS  Google Scholar 

  32. T. Xie and J. M. Bowman, Chem. Phys. Lett., 412, 131–134 (2005).

    Article  ADS  Google Scholar 

  33. S. Yu. Grebenshchikov and R. Schinke, J. Chem. Phys., 131 (18), 181103 (2009).

    Article  ADS  Google Scholar 

  34. M. V. Ivanov and D. Babikov, J. Chem. Phys., 136 (18), 184304 (2012).

    Article  ADS  Google Scholar 

  35. A. Teplukhin and D. Babikov, Phys. Chem. Chem. Phys., 18 (28), 19194–19206 (2016).

    Article  Google Scholar 

  36. S. Sur, S. A. Ndengué, E. Quintas-Sánchez, et al., Phys. Chem. Chem. Phys., 22, 1869−1880 (2020).

    Article  Google Scholar 

  37. O. V. Egorov and A. K. Tretjakov, Russ. Phys. J., 64, No. 7, 1363–1372 (2021).

    Article  Google Scholar 

  38. Yu. N. Kalugina, O. Egorov, and A. van der Avoird, J. Chem. Phys., 155, 054308 (2021).

    Article  ADS  Google Scholar 

  39. S. Sur, E. Quintas-Sánchez, S. A. Ndengué, and R. Dawes, Phys. Chem. Chem. Phys., 21, 9168–9180 (2019).

    Article  Google Scholar 

  40. O. V. Egorov and A. K. Tretyakov, Russ. Phys. J., 63, No. 4, 607–615 (2020).

    Article  Google Scholar 

  41. A. van der Avoird, P. E. S. Wormer, and R. Moszynski, Chem. Rev., 94, 1931 (1994).

    Article  Google Scholar 

  42. L. Bytautas, N. Matsunaga, and K. Ruedenberg, J. Chem. Phys., 132, 074307 (2010).

    Article  ADS  Google Scholar 

  43. Yu. N. Kalugina, A. Faure, A. van der Avoird, et al., Phys. Chem. Chem. Phys., 20, 5469 (2018).

    Article  Google Scholar 

  44. P. Pirlot, Yu. N. Kalugina, R. Ramachandran, et al., J. Chem. Phys., 155, 134303 (2021).

    Article  ADS  Google Scholar 

  45. H.-J. Werner, P. J. Knowles, G. Knizia, et al., MOLPRO, Version 2019.2, a Package of ab initio Programs, URL: https://www.molpro.net.

  46. T. H. Dunning, J. Chem. Phys., 90, 1007 (1989).

    Article  ADS  Google Scholar 

  47. S. F. Boys and F. Bernardi, Mol. Phys., 19, 553 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Egorov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 10–16, March, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, O.V., Kalugina, Y.N. Analysis of Radial Cross Sections of the Potential Energy of the Interacting О3–O2 Complex. Russ Phys J 65, 403–409 (2022). https://doi.org/10.1007/s11182-022-02648-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02648-8

Keywords

Navigation