Skip to main content
Log in

Raman Lidar Sensing of Saturated Hydrocarbon Molecules in the Atmospheric Boundary Layer. Numerical Modeling

  • Published:
Russian Physics Journal Aims and scope

The possibility of measuring the concentration of alkane molecules – methane, ethane, propane, butane, pentane, and hexane – at the maximum permissible concentration (MPC) and higher (with concentrations in the range from 4∙1014 to 1017 cm−3) by a Raman lidar with optimal parameters in the synchronous photon counting mode in the atmospheric boundary layer at altitudes up to 1.5 km is estimated. It has been shown that with the Raman lidar operating at a wavelength of 532 nm, the concentrations of all examined molecules in the atmosphere can be detected on the MPC level: methane can be detected in the entire sensing range up to 1500 m, ethane up to 767 m, propane up to 941 m, butane up to 707 m, pentane up to 518 m, and hexane up to 185 m for a measurement time of 10 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Е. Privalov, A. E. Fotiadi, and V. G. Shemanin, Lasers and Ecological Monitoring of the Atmosphere [in Russian], Lan Publishing House, Saint Patersburg (2013).

    Google Scholar 

  2. Hygienic Standards GN 2.1.6.3492-17 (with changes accepted on May 31, 2018) “Maximum permissible concentrations (MPC) of polluting substances in atmospheric air of urban and rural settlements,” Moscow (2017).

  3. E. I. Voronina, V. E. Privalov, and V. G. Shemanin, Opt. Mem. Neural Netw. (Inf. Opt.), 19, No. 1, 69−76 (2010).

  4. V. E. Privalov and V. G. Shemanin, Meas. Tech., 9, 933–938 (2016).

    Article  Google Scholar 

  5. S. M. Bobrovnikov, G. G. Matvienko, O. A. Romanovskii, et al. Lidar Spectroscopic Gas Analysis of the Atmosphere [in Russian], Publishing House of the Institute of Atmospheric Optics SB RAS, Tomsk (2014).

  6. V. E. Zuev and V. V. Zuev, Remote Optical Sensing of the Atmosphere [in Russian], Gidrometeoizdat, Saint Petersburg (1992).

    Google Scholar 

  7. V. P. Yushkov, Opt. Atm. Okeana, 30, No. 04, 315–328 (2017); DOI: 10.15372/AOO20170409.

  8. Yu. S. Balin, G. P. Kokhanenko, M. G. Klemasheva, et al., Opt. Atmos. Okeana, 30, No. 12, 1065−1068 (2017); DOI: 10.15372/AOO20171210.

  9. A. P. Chaikovsky, Ya. O. Grudo, Ya. A. Karol, et al., J. Appl. Spectrosc., 82, No. 5, 779–787 (2015).

  10. V. E. Privalov and V. G. Shemanin, Bull. Russ. Acad. Sci.: Phys., 79, No. 2, 149–159 (2015).

    Article  Google Scholar 

  11. G. N. Glazov, Statistical Problems of Laser Sensing of the Atmosphere [in Russian], Nauka, Novosibirsk (1987).

    Google Scholar 

  12. R. Mezheris, Laser Remote Sensing [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  13. V. E. Privalov and V. G. Shemanin, Parameters of Lidars for Remote Sensing of Gas Molecules and Aerosol in the Atmosphare, Publishing House of Baltic State Technical Univessity, Saint Petersburg (2001).

    Google Scholar 

  14. V. A. Donchenko, M. V. Kabanov, B. V. Kaul, and I. V. Samokhvalov, Atmospheric Electrooptics [in Russian], Publishing House of Scientific-Technology Literature, Tomsk (2010).

    Google Scholar 

  15. E. D. Hinkley, ed., Laser Monitoring of the Atmosphere [Russian translation], Mir, Moscow (1979).

  16. L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  17. A. M. Prokhorov, ed., Handbook of Lasers, Vol. 1 [in Russian], Sovetskoe Radio, Moscow (1978).

  18. V. E. Privalov and V. G. Shemanin, Meas. Tech., 57, No 12, 1356–1360 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Privalov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 157–164, February, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privalov, V.E., Shemanin, V.G. Raman Lidar Sensing of Saturated Hydrocarbon Molecules in the Atmospheric Boundary Layer. Numerical Modeling. Russ Phys J 65, 365–374 (2022). https://doi.org/10.1007/s11182-022-02644-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02644-y

Keywords

Navigation